Math, asked by jeevika081, 2 months ago

if tan theta =a/b prove that cos theta + sin theta/ cos theta - sin theta =b+a/b-a​

Answers

Answered by SparklingBoy
2

GIVEN :-)

 \tan\theta  =  \dfrac{a}{b}  \\  \\

TO PROVE :-)

 \dfrac{cos \theta + sin \theta  }{cos \theta - sin \theta  }  =  \dfrac{b + a}{b - a}  \\  \\

LHS:-)

 \dfrac{cos \theta + sin \theta  }{cos \theta - sin \theta  }   \\  \\

Dividing Numerator And Denominator by

Cosθ we get

  \dfrac{1  + tan \theta }{1 - tan \theta}  \\  \\  =  \dfrac{1 +  \dfrac{a}{b} }{1 -  \dfrac{a}{b} }  \\  \\  =  \dfrac{ \dfrac{b + a}{ \cancel{b}} }{ \dfrac{b - a}{ \cancel{b}} }  \\  \\  =  \dfrac{b + a}{b - a}  = RHS

HENCE PROVED.

Answered by NewtonBaba420
3

Here is your Solution ☺☺☺✌✌✌

LHS

 \dfrac{cos \theta + sin \theta  }{cos \theta - sin \theta  }   \\  \\

Dividing Numerator And Denominator by

Cosθ. we get

  \dfrac{1  + tan \theta }{1 - tan \theta}  \\  \\  =  \dfrac{1 +  \dfrac{a}{b} }{1 -  \dfrac{a}{b} }  \\  \\  =  \dfrac{ \dfrac{b + a}{ {b}} }{ \dfrac{b - a}{ {b}} }  \\  \\  =  \dfrac{b + a}{b - a}  = RHS

Mark as brainleist

Similar questions