If tan theta=a/b then the value a sin theta + b cos thetha/ a sin theta - b cos theta
Answers
Answer:
( a² + b² ) / ( a² - b² )
Step-by-step explanation:
Given---> tanθ = a / b
To find---> Value of
( aSinθ + bCosθ ) / ( aSinθ - bCosθ )
Solution---> ATQ, tanθ = a / b
Now,
( a Sinθ + bCosθ ) / ( aSinθ - bCosθ )
Taking , Cosθ , common from numerator and denominator , we get,
=Cosθ{a (Sinθ/Cosθ) + b} /Cosθ{a(Sinθ /Cosθ ) - b }
Cosθ , Cancel out from numerator and denominator and we get,
= {a ( Sinθ / Cosθ ) + b } / { a ( Sinθ / Cosθ ) - b }
= ( a tanθ + b ) / ( a tanθ - b )
Putting tanθ = a / b in it we get,
= {a ( a / b ) + b } / { a ( a / b ) - b }
= { ( a² /b ) + b } / { ( a ² / b ) - b }
Taking b , LCM in numerator and denominator, we get,
= { ( a² + b² ) / b } / { ( a² - b² ) / b }
= b ( a² + b² ) / b ( a² - b² )
b is cancel out from numerator and denominator,we get,
= ( a² + b² ) / ( a² - b² )
#Answerwithquality
#BAL