If tan theta and sec theta the roots of the equation x square + bx + c equal to zero then
Answers
Answered by
3
Answer:
Step-by-step explanation:
Since tanΘ and secΘ are the roots of the equation
Then,
tanΘ + secΘ= -b/a -----------------(1)
tan Θ. secΘ= c/a ---------------(2)
From (1) we get,
sinΘ/cosΘ + 1/cosΘ = -b/a
sinΘ+1/cosΘ = -b/a
Squaring...
(1+ sinΘ)^2/( cos^2Θ = b^2/a^2
1+ sinΘ/ 1- sinΘ = b^2/a^2
or 1+ sinΘ -1+sinΘ/ ( 1+ sinΘ +1- sinΘ) = b^2- a^2/a^2+ b^2
or sinΘ= b^2- a^2/a^2+b^2-------------------(IV)
from (III) 7 (IV)
b^2- a^2/a^2+b^2/( 1 -{ (b^2-a^2)/(a^2+b^2)}^2 = c/a
or (1 - (b^2-a^2/(b^2+a^2)}^2/ ( b^2-a^2/b^2+a^2)= a/c
or [(b^2+a^2)^2 - ( b^-a^2)^2 /(b^2-a^2)( b^2+a^2) = a/c
or[( b^2+a^2+b2-a^2)( b^2+a^2-b^2+ a^2)= a/c( b^4 - a^4)
or 2 b^2 *2a^2 = a/c ( b^4 - a^4)
or b^4 -a^4 - 4b^2ca =0
or b^4 = 4ab^2c + a^4 ANSWER
Similar questions