Math, asked by jawakar10, 10 months ago

if tan theta+cot theta =1 then tan square theta +cot square theta is equal to?Please answer it fast. No spam ​

Answers

Answered by ananyasharma09082002
5

Step-by-step explanation:

as we know cota is equal to 1/tana

Attachments:
Answered by supreethacmsl
2

Answer:

tan^{2} θ +  cot^{2} θ = -1

Step-by-step explanation:

Given that, tanθ + cotθ = 1

We are expected to find,

                   tan^{2} θ + cot^{2} θ

Let us square tanθ + cotθ = 1  on both sides.

                      (tan\theta+cot\theta)^{2} = 1^{2}

Use the formula,  

                    (a+b)^{2} = a^{2}+b^{2}+2ab

Clearly, a=tanθ and b=cotθ

                          (tan\theta+cot\theta)^{2}=1

 tan^{2}\theta+cot^{2}\theta+2*tan\theta*cot\theta=1

We know that the reciprocal of    cot\theta=\frac{1}{tan\theta}

tan^{2}\theta+cot^{2}\theta+2*tan\theta*\frac{1}{tan\theta} =1

                       tan^{2}\theta+cot^{2}\theta+2=1

                             tan^{2}\theta+cot^{2}\theta=1-2

                             tan^{2}\theta+cot^{2}\theta=-1

  ∴  tan^{2}\theta+cot^{2}\theta=-1 is the required solution.

(#SPJ3)

Similar questions