if tan theta + cot theta =2 then find √tan^2 theta and cot^2 theta
Answers
Answered by
11
Given :-
Tan Φ + Cot Φ = 2
Solution :-
Tan Φ + Cot Φ = 2
Squaring both sides ,
( TanΦ + CotΦ ) ^2 = ( 2 )^2
[Using Identity ( a + b )^2
= a^2 + 2ab + b^2 ]
Tan^2 Φ + 2 * Tan Φ * CotΦ + Cot^2 Φ = 4
[ As we know that ,CotΦ = 1/ Tan Φ ]
Tan^2 Φ + 2 * Tan Φ * 1 / TanΦ + Cot^2 = 4
Tan^2 + 2 + Cot^2 Φ = 4
Tan^2Φ + Cot^2Φ = 4 - 2
Tan^2 Φ + Cot^2 Φ = 2 .......eq( 1 )
Now ,
= ?
√ tan^2 + cot^2 = √2. [ from eq( 1 ) ]
Anonymous:
Wow ! That's funny trigonometry ! :)
Similar questions