Math, asked by charandasdongare770, 4 months ago

If tan theta+cot theta=2, Then tan^10 theta+cot^10 theta =???​

Answers

Answered by SteelTitan
550

Solution :-

Here , in tanθ + cotθ = 2 , cotθ can be written as 1/tanθ .

→ tanθ + cotθ = 2

→ tanθ + 1/tanθ = 2

→ tan²θ + 1/tanθ = 2

→ tan²θ + 1 = 2tanθ

→ tan²θ + 1² - 2tanθ = 0

→ ( tanθ - 1 )² = 0

→ tanθ - 1 = 0

→ tanθ = 1

Now finding tan¹θ + cot¹θ

Substituting cot¹θ = 1/tan¹θ

→ tan¹⁰θ + 1/tan¹⁰θ

Substituting tan θ = 1

1¹⁰ + 1/1¹⁰

→ 1 + 1/1

→ 1 + 1

tan¹⁰θ + cot¹⁰θ = 2

Hence , tan¹⁰θ + cot¹⁰θ = 2


Anonymous: Nice
Answered by sangram0111
3

Given:

If tan \[\tan \theta  + \cot \theta  = 2\], Then \[{\tan ^{10}}\theta  + {\cot ^{10}}\theta \] theta =?

Solution:

Find the value of θ,

Put, \[\cot \theta  = \frac{1}{{\tan \theta }}\] in \[\tan \theta  + \cot \theta  = 2\]

\[ \Rightarrow \tan \theta  + \frac{1}{{\tan \theta }} = 2\]

\[ \Rightarrow \frac{{{{\tan }^2}\theta  + 1}}{{\tan \theta }} = 2\]

\[ \Rightarrow {\tan ^2}\theta  + 1 - 2\tan \theta  = 0\]

\[ \Rightarrow {\left( {\tan \theta  - 1} \right)^2} = 0\]

Solve further,

\[\begin{array}{l} \Rightarrow \tan \theta  = 1\\ \Rightarrow \tan \theta  = \tan 45^\circ \\ \Rightarrow \theta  = 45^\circ \end{array}\]

Evaluate \[{\tan ^{10}}\theta  + {\cot ^{10}}\theta \] by putting \[\theta  = 45^\circ \],

\[\begin{array}{l} = {\tan ^{10}}45^\circ  + {\cot ^{10}}45^\circ \\ = {1^{10}} + {1^{10}}\\ = 1 + 1\\ = 2\end{array}\]

Hence, the value of \[{\tan ^{10}}\theta  + {\cot ^{10}}\theta \] is 2.

Similar questions