Math, asked by jaiyakhushi, 1 month ago

if tan theta + cot theta = 2 then tan ^2020 theta + cot ^ 2020 theta is​

Answers

Answered by sammanidanaiah816
1

Step-by-step explanation:

Answer

Correct option is

A

2

tanθ+cotθ=2

Squaring both sides;

(tanθ+cotθ)

2

=2

2

⇒tan

2

θ+cot

2

θ+2tanθcotθ=4

⇒tan

2

θ+cot

2

θ+2=4

⇒tan

2

θ+cot

2

θ=2

Answered by NirmalPandya
11

Given:

Tan θ + Cot θ = 2

To find:

The value of Tan²⁰²⁰ θ + Cot²⁰²⁰ θ.

Solution:

It is given that,

tan \theta +cot \theta =2

we know that the reciprocal of Cot\theta is tan\theta i.e.,

Cot\theta=\frac{1}{tan\theta}

Substituting in the given expression:

Tan\theta +\frac{1}{Tan\theta}=2

Taking the LCM as Tan\theta

\frac{Tan^{2} \theta+1}{Tan\theta} =2

On cross-multiplying,

Tan^{2} \theta +1=2Tan\theta

Transposing 2Tan\theta from RHS to LHS

Tan^{2} \theta-2Tan\theta +1=0

This is in the form of identity,

(a-b)^{2} =a^{2} -2ab+b^{2}

where, a=Tan\theta, b=1

(Tan\theta -1)^{2} =0

Tan\theta -1=0

Tan\theta=1

Now, Cot\theta=\frac{1}{tan\theta}

Cot\theta=\frac{1}{1} =1

Tan\theta=1, Cot\theta=1

Then,

Tan^{2020}\theta+Cot^{2020}\theta

=1^{2020}+1^{2020}

Any exponent of 1 as the base is 1 itself.

Hence, =1^{2020}+1^{2020}=1+1=2

Thus, Tan^{2020}\theta+Cot^{2020}\theta=2

If tan θ + cot θ = 2 then, tan²⁰²⁰ θ + cot²⁰²⁰ θ =​ 2

Similar questions