Math, asked by padma1706, 9 months ago

If tan theta + cot theta = 3, find
the value of (tan^2 theta + cot^2 theta)(tan^3 theta + cot^3 theta).

please answer this question and help me ....
thanks in advance​

Answers

Answered by Anonymous
4

Step-by-step explanation:

tanO + CotO = 3 -----(1)

Doing square both side

tan²O + Cot²O + 2 = 9

tan²O + Cot²O = 7 ----(2)

Cube of equation (1)

tan³O + Cot³O + 3(3) = 27

tan³O + Cot³O = 18 ----(3)

equation (2) × equation (3)

(tan²O+Cot²O)(tan³O+Cot³O) = 7*18 = 126

Answered by Anonymous
9

HEY MATE YOUR ANSWER IS HERE...

(TAKING THETA AS X )

 \tan(x)  +  \cot(x)  \:  = 3

SQUARING BOTH SIDES ..

( \tan(x)  +  \cot(x) ) ^{2}  = 9

 { \tan }^{2} (x) +  { \cot(x) }^{2}  + 2 \tan(x)  \cot(x)  = 9

NOW TAN THETA × COT THETA = 1

  { \tan }^{2}(x)  +  \ { \cot }^{2}( x) = 9 - 2

{ \tan }^{2}(x)  +  \ { \cot }^{2}( x) = 7 \:  \: be \: eq \: 1

NOW IN CASE 2

 \tan(x)  +  \cot(x)  \:  = 3 \:

NOW CUBING BOTH SIDES

  {(\tan(x)  +  \:  \cot(x) )}^{3}  = 27

 { \tan }^{3} x \:  +  { \cot }^{3} x  \: + 3 \tan(x)  \cot(x) ( \tan(x)  +  \cot(x) ) = 27

NOW AGAIN TAN THETA × COT THETA = 1

AND TAN THETA + COT THETA = 3 ( GIVEN)

 { \tan }^{3} x \:  +    { \cot }^{3} x + 3(3) = 27

 { \tan }^{3} x \:  +    { \cot }^{3} x = 27 \:  - 9

{ \tan }^{3} x \:  +    { \cot }^{3} x = 18 \: be \: eq \: 2

★ NOW FROM EQ 1 AND 2 ★

PUTTING THEIR VALUES

 ( \:  \: { \tan}^{2} (x) \:  +  { \cot}^{2} (x) \:  \: )(  \:  \: { \tan }^{3} (x) \:  \:  +  { \cot }^{3} (x) \:  \: )

 = (7)(18)

 = 126

THANKS FOR YOUR QUESTION HOPE THIS HELPS

★SORRY FOR DELAYING★

★ KEEP SMILING ☺️✌️ ★

Similar questions