if tan theta+cot theta=3, find the value of((tan theta)^2+(cot theta)^2) ((tan theta)^3+(cot theta)^3)
Answers
On squaring both sides :
=>
=>
=>
=> ------(1)
On cubing both sides :
=>
=>
=>
=>
=> ------(2)
According to question:
Using (1) and (2)
=>
=>
Answer:
The correct answer to this question is:
(tan²θ + cot²θ) * (tan³θ + cot³θ) = 126
Step-by-step explanation:
Given,
tan θ + cot θ = 3 (equation 1)
To find (tan²θ + cot²θ) * (tan³θ + cot³θ) =?
By the squaring of equation 1 on both sides we get,
(tan θ + cot θ )² = 3²
tan²θ + cot²θ + 2 * tan θ cot θ = 9
tan²θ + cot²θ + 2 * 1 = 9
tan²θ + cot²θ = 9 - 2
tan²θ + cot²θ = 7
By cubing equation 1 on both sides we get,
(tan θ + cot θ )³ = 3³
tan³θ + cot³θ + 3 * tan²θ * cot θ + 3 * tan θ * cot²θ = 27
tan³θ + cot³θ + 3 * tan²θ * cot θ + 3 * tan θ * cot²θ = 27
tan³θ + cot³θ + 3 * tan θ * (tan θ * cot θ)+ 3 * (tan θ * cot θ) * cot θ = 27
tan³θ + cot³θ + 3 * tan θ * 1 + 3 * 1 * cot θ = 27
tan³θ + cot³θ + 3 * tan θ + 3 * cot θ = 27
tan³θ + cot³θ + 3 * (tan θ + cot θ) = 27
tan³θ + cot³θ + 3 * 3 = 27
tan³θ + cot³θ + 9 = 27
tan³θ + cot³θ = 27 - 9
tan³θ + cot³θ = 18
∴ (tan²θ + cot²θ) * (tan³θ + cot³θ) = 7 * 18
(tan²θ + cot²θ) * (tan³θ + cot³θ) = 126
Hence, (tan²θ + cot²θ) * (tan³θ + cot³θ) = 126
Click here for more about trigonometry:
https://brainly.in/question/786386
Click here for more about algebraic formulas:
https://brainly.in/question/3952041