Math, asked by birarisishwar, 9 months ago

if tan theta + cot theta = 4, find tan theta is to 4 + cot theta is to 4​

Answers

Answered by kamakshi99
0

Answer:

your answer is 5 letter bite

Answered by Anonymous
40

Given:-

  • tanθ + cotθ = 4

To Find:-

  • The value of tan⁴θ + cot⁴θ

Solution:-

We are given:- tanθ + cotθ = 4

\qquad\small\underline{\pmb{\sf \:Squaring  \: on \: both \: sides :-}}

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{  \big( tanθ + cotθ \big) ² = 4²}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan²θ + cot²θ + 2tanθcotθ = 16}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan²θ + cot²θ + 2 × tanθ × \dfrac{1}{tanθ }= 16}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan²θ + cot²θ + 2 = 16}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan²θ + cot²θ = 16 - 2}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan²θ + cot²θ = 14}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ \big(  tan²θ + cot²θ \big) ² =  \big( 14 \big)²}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan⁴θ + cot⁴θ + 2tan²θcot²θ = 196}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan⁴θ + cot⁴θ + 2 × tan²θ × \dfrac{1}{tan²θ} = 196}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan⁴θ + cot⁴θ + 2 = 196}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ tan⁴θ + cot⁴θ = 196 - 2}}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{ tan⁴θ + cot⁴θ = 194}}}\\

  • Therefore the value of tan⁴θ + cot⁴θ is 194.

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

Similar questions