Math, asked by rishu3778, 1 year ago

If tan theta +cot theta=4,find value of tan4theta+cot4theta.

Answers

Answered by MaheswariS
19

Answer:

\text{The value of }\bf\,tan\,4\theta+cot\,4\theta\text{ is }\frac{4}{\sqrt3}}

Step-by-step explanation:

\text{Given:}

tan\theta+cot\theta=4

\implies\frac{sin\theta}{cos\theta}+\frac{cos\theta}{sin\theta}=4

\implies\frac{sin^2\theta+cos^2\theta}{sin\theta\,cos\theta}=4

\implies\frac{1}{sin\theta\,cos\theta}=4

\implies\frac{1}{4}=sin\theta\,cos\theta

\implies\frac{1}{2}=2\,sin\theta\,cos\theta

\implies\,sin\,2\theta=\frac{1}{2}

\implies\,2\theta=30^{\circ}

\implies\theta=15^{\circ}

\text{Now,}

tan\,4\theta+cot\,4\theta

=tan\,4(15^{\circ})+cot\,4(15^{\circ})

=tan\,60^{\circ}+cot\,60^{\circ}

=\sqrt{3}+\frac{1}{\sqrt3}

=\frac{3+1}{\sqrt3}

=\frac{4}{\sqrt3}

\implies\boxed{\bf\,tan\,4\theta+cot\,4\theta=\frac{4}{\sqrt3}}

Answered by neeta9456
27

Answer:

194

Step-by-step explanation:

Attachments:
Similar questions