Math, asked by Anonymous, 10 months ago

if (tan theta - cot theta)=5 find the value of (tan^3 theta - cot^3 theta)(cot^2 theta - tan^2 theta)

Answers

Answered by MaheswariS
3

\textbf{Given:}

\bf\;tan\theta-cot\theta=5

\textbf{To find:}

(tan^3\theta-cot^3\theta)(cot^2\theta-tan^2\theta)

tan\theta-cot\theta=5

\text{Squaring on both sides, we get}

(tan\theta-cot\theta)^2=25

tan^2\theta+cot^2\theta-2\;tan\theta\,cot\theta=25

tan^2\theta+cot^2\theta-2(1)=25

tan^2\theta+cot^2\theta=25+2

\implies\bf\;tan^2\theta+cot^2\theta=27

\text{Add 2 on both sides, we get}

\implies\;tan^2\theta+cot^2\theta+2=29

\implies(tan\theta+cot\theta)^2=29

\implies\bf\,tan\theta+cot\theta=\sqrt{29}

\text{Now,}

(tan^3\theta-cot^3\theta)(cot^2\theta-tan^2\theta)

=(tan\theta-cot\theta)(tan^2\theta+tan\theta\,cot\theta+cot^2\theta)\;(cot\theta-tan\theta)(cot\theta+tan\theta)

=(tan\theta-cot\theta)(tan^2\theta+cot^2\theta+1)\;(cot\theta-tan\theta)(cot\theta+tan\theta)

=-(tan\theta-cot\theta)(tan^2\theta+cot^2\theta+1)\;(tan\theta-cot\theta)(cot\theta+tan\theta)

=-(5)(27+1)\;(5)(\sqrt{29})

=-(25)(28)(\sqrt{29})

=-700\sqrt{29}

\therefore\;\textbf{The value of}\bf\;(tan^3\theta-cot^3\theta)(cot^2\theta-tan^2\theta)\;\textbf{is}\bf\,-700\sqrt{29}

Find more:

If tan theta +cot theta=4,find value of tan4theta+cot4theta.

https://brainly.in/question/8129767

Similar questions