Math, asked by princess3790, 11 months ago

If (tan theta + cot theta ) = 7/4 then (tan^2 theta +cot^2 theta) = ?​

Answers

Answered by shomoshree
0

Answer:

this is yr answer ..follow me

Attachments:
Answered by pintusingh41122
0

If (tan theta + cot theta ) = 7/4 then (tan^2 theta +cot^2 theta) = \dfrac{17}{16}

Step-by-step explanation:

Given tan\theta +cot\theta =\dfrac{7}{4}

We have to find tan^{2}\theta +cot^{2}\theta

We know the identity \left ( \textrm{a+b} \right)^{2}=\textrm{a}^{2}+\textrm{b}^{2}+2\textrm{ab}

So we have

\left (tan\theta +cot\theta \right )^{2}=tan^{2}\theta +cot^{2} \theta +2tan\theta cot\theta

\Rightarrow tan^{2}\theta +cot^{2} \theta =\left (tan\theta +cot\theta \right )^{2}-2tan\theta cot\theta

\Rightarrow tan^{2}\theta +cot^{2} \theta =\left (\dfrac{7}{4} \right )^{2}-2tan\theta \times\frac{1}{tan\theta }

\Rightarrow tan^{2}\theta +cot^{2} \theta =\left (\dfrac{7}{4} \right )^{2}-2

\Rightarrow tan^{2}\theta +cot^{2} \theta =\dfrac{49}{16}-2

\Rightarrow tan^{2}\theta +cot^{2} \theta =\dfrac{49-32}{16}

\Rightarrow tan^{2}\theta +cot^{2} \theta =\dfrac{17}{16}

Similar questions