Math, asked by suryakantadash97, 10 months ago

if tan theta + cot theta is equal to 4 then find tan square theta + cot square theta​

Answers

Answered by kaushik05
40

  \huge \green{\mathfrak{solution}}

Given:

 \boxed{tan \theta +  cot \theta = 4}

To find:

 \boxed{ {tan}^{2}  \theta \:  +  {cot}^{2}  \theta}

 \implies  \: tan \theta \:   +  \: cot \theta = 4

Square both side , we get

 \implies \:(  {tan \theta \:  + cot \theta})^{2}  =  {4}^{2}  \\  \\  \implies {tan}^{2}  \theta +  {cot}^{2}  \theta \:  + 2tan \theta \: cot \theta = 16 \\  \\  \implies \:  {tan}^{2}  \theta \:  +  {cot}^{2}  \theta + 2 = 16 \\  \\  \implies \:  {tan}^{2}  \theta \:  +  {cot}^{2}  \theta = 16 - 2 = 14 \\  \\  \implies \:  {tan}^{2}  \theta \:  +  {cot}^{2}  \theta = 14

Hence , the value is

 \huge \boxed {\red{\bold{14}}}

tan@×cot@=1

Answered by RvChaudharY50
35

\large\red{\sf\underline{\underline{\:Given:\:\:}}}

Tan@ + cot@ = 4

\underline{{\colorbox{yellow}{Question}}}

tan²@ + cot²@ = ?

we know that,

\large\red{\boxed{\sf </strong><strong>(x + y)^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy</strong><strong>}}

\large\</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{\boxed{\sf </strong><strong>\cot(x)  =  \frac{1}{ \tan(x) }</strong><strong>}}

So,

Tan@ + cot@ = 4

Squaring both sides we get,

(Tan@ + cot@) = (4)²

Tan²@ + cot²@ + 2tan@*cot@ = 16

Tan²@ + cot²@ + 2tan@ × [1/tan@]= 16

Tan²@ + cot²@ + 2 = 16

\large\</strong><strong>p</strong><strong>i</strong><strong>n</strong><strong>k</strong><strong>{\boxed{\sf </strong><strong>\tan^{2} </strong><strong>@</strong><strong>  +   \cot{}^{2} </strong><strong>@</strong><strong> = 14</strong><strong>}}

\color {red}\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

\boxed{\begin{minipage}{7 cm}Fundamental Trignometric Identities\\ \\ $\sin^2\theta+\cos^2\theta=1\\ \\ 1+\tan^2\theta=\sec^2\theta \\ \\ 1+\cot^2\theta=\text{cosec}^2 \, \theta$ \end{minipage}}

Similar questions