Math, asked by adrijashaw1, 5 hours ago

if tan theta=cot theta then the value of 2 tan theta+cos 2 theta is

Answers

Answered by siddheshpankhade
4

Step-by-step explanation:

tan theta =cos theta

then

2 tan theta +2 cos theta = 2 cos theta + 2 sin theta

2 tan theta =2 sin theta

But I am not sure.

Answered by Manmohan04
7

Given,

\[\tan \theta  = cot\theta \]

Solution,

Know that, \[\tan \theta  = cot\theta \]

Rewrite it,

\[ \Rightarrow \tan \theta  = \frac{1}{{\tan \theta }}\]

\[\begin{array}{l} \Rightarrow {\tan ^2}\theta  = 1\\ \Rightarrow \tan \theta  =  \pm 1\\ \Rightarrow \theta  = 45^\circ ,135^\circ \end{array}\]

Calculate the value,

Consider \[\theta  = 45^\circ \]

\[ = 2\tan \theta  + {\cos ^2}\theta \]

\[ = 2\tan 45^\circ  + {\cos ^2}45^\circ \]

\[ = 2 \times 1 + {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\]

\[ = 2 + \frac{1}{2}\]

\[ = \frac{5}{2}\]

Consider \[\theta  = 135^\circ \]

\[\begin{array}{l} = 2\tan \theta  + {\cos ^2}\theta \\ = 2\tan 135^\circ  + {\cos ^2}135^\circ \end{array}\]

\[ = 2 \times \left( { - 1} \right) + {\left( { - \frac{1}{{\sqrt 2 }}} \right)^2}\]

\[\begin{array}{l} =  - 2 + \frac{1}{2}\\ = \frac{{ - 3}}{2}\end{array}\]

Hence the values are \[\frac{5}{2}\] and \[\frac{{ - 3}}{2}\].

Similar questions