Math, asked by mobin665, 4 months ago

if tan theta equal to 8 by 15 find the values of their trigonometrical ratios for teta ​

Answers

Answered by REDPLANET
21

\underline{\boxed{\bold{\bigstar \; Question \; \bigstar}}}  

➠ If tanθ = 8/15 find the values of their trigonometric ratios for "θ" .

\; \; \; \;  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

   

\underline{\boxed{\bold{\bigstar \; Important\;Information \; \bigstar}}}  

\; \; \; \;  

❏ Trigonometry is one of the most important topic in modern mathematics that is useful in various field.

\; \; \; \;  

❏ Here are the simple formula to find various trigonometric ratios if 2 sides of triangle is known.

\; \; \; \;  

\boxed { \bold { :\leadsto \; sin\theta = \dfrac{Opposite \; side}{ Hypotenuse} } }

\; \; \; \;  

\boxed { \bold { :\leadsto \; cos\theta = \dfrac{Adjacent \; side}{ Hypotenuse} } }

\; \; \; \;  

\boxed { \bold { :\leadsto \; tan\theta = \dfrac{Opposite \; side}{ Adjacent \; side} } }

 \; \; \; \;  

\boxed { \bold { :\leadsto \; cosec\theta = \dfrac{ Hypotenuse}{Opposite \; side} } }

\; \; \; \;  

\boxed { \bold { :\leadsto \; sec\theta = \dfrac{ Hypotenuse}{Adjacent \; side} } }

\; \; \; \;  

\boxed { \bold { :\leadsto \; cot\theta = \dfrac{ Adjacent \; side}{Opposite \; side} } }

\; \; \; \;  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

   

\underline{\boxed{\bold{\bigstar \; Given \; \bigstar}}}

➠ If tanθ = 8/15

 \; \; \; \;  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

   

\underline{\boxed{\bold{\bigstar \; Answer \; \bigstar}}}

Let's Start !

   

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

   

Let's assume the following triangle in given attachment !

\; \; \; \;  

As tanθ = 8/15,

\; \; \; \;  

AB = 15k

BC = 8k

AC = ?

\; \; \; \;  

By Pythagoras theorem ,

\; \; \; \;  

\bold { \red { :\implies AB^2 + BC^2 = AC^2 } }

\bold { \blue { :\implies (8k)^2 + (15k)^2 = AC^2 } }

\bold { \green { :\implies 64k^2 + 225k^2 = AC^2 } }

\bold { \blue { :\implies  AC^2 = 289k^2 } }

\boxed { \bold { \orange { :\implies  AC = 17k } } }

 \; \; \; \;  

\; \; \; \;  

Now by finding hypotenuse we can calculate trigonometric ratios !

\; \; \; \;  

  • Opposite side = BC = 8k
  • Adjacent side = AB = 15k
  • Hypotenuse = AC = 17k

\; \; \; \;  

\bold { :\leadsto \; sin\theta = \dfrac{Opposite \; side}{ Hypotenuse} = \dfrac{8k}{ 17k} = \dfrac{8}{17} }

\; \; \; \;  

\bold { :\leadsto \; cos\theta = \dfrac{Adjacent \; side}{ Hypotenuse} = \dfrac{15k}{ 17k} = \dfrac{15}{17}  }

\; \; \; \;  

\bold { :\leadsto \; tan\theta = \dfrac{Opposite \; side}{ Adjacent \; side} = \dfrac{8k}{ 15k} =  \dfrac{8}{15}  }

\; \; \; \;  

\bold { :\leadsto \; cosec\theta = \dfrac{ Hypotenuse}{Opposite \; side} = \dfrac{ 17k}{8k} = \dfrac{17}{8} }

\; \; \; \;  

\bold { :\leadsto \; sec\theta = \dfrac{ Hypotenuse}{Adjacent \; side} = \dfrac{ 17k}{15k} = \dfrac{17}{15}  }

\; \; \; \;  

\bold { :\leadsto \; cot\theta = \dfrac{ Adjacent \; side}{Opposite \; side} = \dfrac{ 15k}{8k} =  \dfrac{15}{8}  }

\; \; \; \;  

\; \; \; \;  

Hereby we are done with all trigonometric ratios .-.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\; \; \; \;  

Hope this helps u.../

【Brainly Advisor】

Attachments:
Similar questions