Math, asked by kehiv73540, 10 months ago

If tan theta equals to 1 find the value of sin theta + cos theta

Answers

Answered by Anonymous
13

Solution :

Given,

tan∅ = 1

To finD

sin∅ + cos∅

Consider the relation tan∅ = 1.

 \sf \:  \tan( \theta)  = 1 \\  \\  \longrightarrow \:  \sf \: tan \theta= tan45 \\  \\  \longrightarrow \:   \sf \:  \theta = 45^{\circ}

The angle is 45°

Now,

 \sf \:  \sin(45)  +  \cos(45)  \\  \\  \implies \:  \sf \:  \dfrac{1}{ \sqrt{2} }  +  \dfrac{1}{ \sqrt{2} }  \\  \\  \implies \:  \sf \:  \dfrac{2}{ \sqrt{2} }  \implies \:  \sqrt{2}

Thus,sin∅ + cos∅ = √2

Also,

Tan∅ = 1

→ Tan45 = tan∅

→ tan∅ = tan(180 + 45)

→ tan∅ = tan225

→ ∅ = 225°

Now,

(180 + ∅) lies in third quadrant,cos and sin would be negative

So,

sin225 + cos225

= - 1/√2 - 1/√2

= - √2

Thus,sin∅ + cos∅ = ± √2

Similar questions