Math, asked by SurtajKumar, 6 months ago

if tan theta equals to 1 then find the values of sin theta + cos theta upon sec theta + cosec theta​

Answers

Answered by Anonymous
61

ɢɪᴠᴇɴ:-

  •  \tan\:\theta\:=\:\sf\:1

ᴛᴏ ꜰɪɴᴅ:-

  • \sf\:\dfrac{\sin\:\theta\:+\:\cos\:\theta}{\sec\:\theta\:+\:\csc\:\theta}

From trigonometry table,

we know,

\begin{lgathered}\tan\:\sf\:45^{\circ}\:=\:1\\\\\\\therefore\sf\:\theta\:=\:45^{\circ}\end{lgathered}

Then,

\begin{lgathered}\sf\:\dfrac{\sin\:\theta\:+\:\cos\:\theta}{\sec\:\theta\:+\:\cosec\:\theta}\\\\\\\sf\:Now\:,\\\\\\:\implies\sf\:\sin\:\theta\:=\:\sin\:45^{\circ}\:=\:\dfrac{1}{\sqrt{2}}\\\\\\:\implies\sf\:\cos\:\theta\:=\:\cos\:45^{\circ}\:=\:\dfrac{1}{\sqrt{2}}\\\\\\:\implies\sf\:\sec\:\theta\:=\:\sec\:45^{\circ}\:=\:\sqrt{2}\\\\\\:\implies\sf\:\csc\:\theta\:=\:\csc\:45^{\circ}\:=\:\sqrt{2}\end{lgathered}

Now,

\begin{lgathered}\sf\:\dfrac{\sin\:\theta\:+\:\cos\:\theta}{\sec\:\theta\:+\:\csc\:\theta}\\\\\\\sf\:=\:\dfrac{\sin\:45^{\circ}\:+\:\cos\:45^{\circ}}{\sec\:45^{\circ}\:+\:\csc\:45^{\circ}}\\\\\\\displaystyle\sf\:=\:\dfrac{\dfrac{1}{\sqrt{2}}\:+\:\dfrac{1}{\sqrt{2}}}{\sqrt{2}\:+\:\sqrt{2}}\\\\\\\displaystyle\sf\:=\:\dfrac{\dfrac{1\:+\:1}{\sqrt{2}}}{2\:\sqrt{2}}\\\\\\\displaystyle\sf\:=\:\dfrac{\dfrac{2}{\sqrt{2}}}{2\:\sqrt{2}}\end{lgathered}

\begin{lgathered}\displaystyle\sf\:=\:\dfrac{2}{\sqrt{2}}\:\div\:2\:\sqrt{2}\\\\\\\sf\:=\:\dfrac{\cancel2}{\sqrt{2}}\:\times\:\dfrac{1}{\cancel{2}\:\sqrt{2}}\\\\\\\sf\:=\:\dfrac{1}{\sqrt{2}\:\times\:\sqrt{2}}\\\\\\\sf\:=\:\dfrac{1}{(\:\sqrt{2}\:)^2}\\\\\\\sf\:=\:\dfrac{1}{2}\\\\\\\end{lgathered}

:\implies\bf\dfrac{\sin\:\theta\:+\:\cos\:\theta}{\sec\:\theta\:+\:\csc\:\theta}\:=\:\dfrac{1}{2}

━━━━━━━━━━━━━━━━━━━━━━

\large{\pink{\underline{\tt{Let's\:know\:more!♡}}}}

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Answered by Anonymous
1

Answer:

The Above Answer Is Correct ......

Similar questions