Math, asked by orthibk, 10 months ago

if tan theta equals to p/q find the value of p sin - q sin /p sin + q sin ​

Answers

Answered by BrainlyIAS
2

Answer:

Given     tan x =\frac{p}{q} \\

We need to find the value of

\frac{psinx-qsinx}{psinx+qsinx}

Step-by-step explanation:

tan x =\frac{p}{q} \\

Use pythagoras theorem ,

p^{2} +q^{2} =x^{2} \\\\=> x = \sqrt{p^{2}+q^{2}  }

So sinx=\frac{p}{\sqrt{p^{2}+q^{2}  } }

psinx=\frac{p^{2} }{\sqrt{p^{2}+q^{2}  } }\\\\qsinx=\frac{pq }{\sqrt{p^{2}+q^{2}  } }

So psinx-qsinx = \frac{p^{2} }{\sqrt{p^{2}+q^{2}  } }-\frac{pq }{\sqrt{p^{2}+q^{2}  } }\\\\=> psinx-qsinx=\frac{p(p-q)}{\sqrt{p^{2}+q^{2}  } } \\\\psinx+qsinx = \frac{p^{2} }{\sqrt{p^{2}+q^{2}  } }+\frac{pq }{\sqrt{p^{2}+q^{2}  } }\\\\=> psinx+qsinx=\frac{p(p+q)}{\sqrt{p^{2}+q^{2}  } }\\\\

Therefore \frac{psinx-qsinx}{psinx+qsinx} = \frac{\frac{p(p-q)}{\sqrt{p^{2}+q^{2}  } } )}{\frac{p(p+q)}{\sqrt{p^{2}+q^{2}  } } )} \\\\=>\frac{psinx-qsinx}{psinx+qsinx}=\frac{(p-q)}{(p+q)}

Hope it may helps you & mark it as brainliest plz

Similar questions