if tan theta is 5/12,find sin theta and cos theta
Answers
Answer:
here sin theta = 5/13 , and cos theta = 12/13
Step-by-step explanation:
so here tan theta = 5/12 [ as given ]
tan=opposite/adjecent so sin=opposite/hypo and cos = adjecent/hypo
so here 5 is opposite and and 12 is adjecent so hypo=x
so sin = 5/x and cos=12/x
now lets find x by pythogerous therom
x2= [5]2 + [12]2 [ here there is 5 square and 12 square ]
x2= 25+144= 169
so root 169=13
so sin = 5/13 and cos = 12/13
Solution
Given :-
- tan θ = 5/12
Find :-
- sin θ & cos θ
Explanation
Using Formula
★ tan θ = perpendicular/Base
★cos θ = Base/Hypotenuse
Then, Assume that,
ABC be a triangle.
Where,
- AB = Perpendicular = 5
- BC = Base = 12
- CA = Hypotenuse
Now, first Calculate Hypotenuse(CA)
Using Pythagoras's Theorem.
★ (Hypotenuse)² = (Perpendicular)² +(Base)²
Keep all above values
➡ CA² = 5² + 12²
➡ CA² = 25 + 144
➡ CA² = 169
➡ CA = √(169)
➡ CA = 13
Since
- Hypotenuse will be CA = 13
____________________
Now, Calculate sin θ,
★ sin θ = perpendicular/Hypotenuse
➡ sin θ = 5/13
Now, Calculate cos θ
➡ cos θ = Base/Hypotenuse
➡cos θ = 12/13
Hence
- Value of sin θ = 5/13
- Value of cos θ = 12/13