Math, asked by saugatabiswas4752, 6 months ago

If tan theta is =8/15, evaluate: sin theta - 1 / cos theta (1 - cos theta)

Answers

Answered by Anonymous
5

Solution:-

Given

 \rm \to \:  \tan  \theta =  \dfrac{8}{15}

To find

 \to \rm   \dfrac{ \sin \theta - 1}{   \cos\theta (1 -  \cos\theta)}

We know that

\rm \to \:  \tan  \theta =  \dfrac{8}{15}   = \dfrac{p}{b}

Using pythagoras theorem

 \rm \to \:  {h}^{2}  =  {p}^{2}  +  {b}^{2}

 \rm \:  {h}^{2}  = 8 {}^{2}  + 15 {}^{2}

 \rm {h}^{2}  = 64 + 225

 \rm {h}^{2}  = 289

 \rm \: h {}^{}  =  \sqrt{289}

 \rm \: h = 17

we know that

 \rm \sin \theta =  \dfrac{p}{h} =  \dfrac{8}{17}  \:  \:  \: and \:  \:  \cos \theta =  \dfrac{b}{h}  =  \dfrac{15}{17}

Now put the value on

 \to \rm   \dfrac{ \sin \theta - 1}{   \cos\theta (1 -  \cos\theta)}

 \to \rm \:  \dfrac{ \dfrac{8}{17}  - 1}{ \dfrac{15}{17} \bigg(1 -  \dfrac{15}{17}  \bigg) }

 \to \rm \dfrac{ \dfrac{8 - 17}{17} }{ \dfrac{15}{17}  \bigg( \dfrac{17 - 15}{17} \bigg) }

 \rm \to \:  \dfrac{ \dfrac{ - 9}{17} }{ \dfrac{15}{17}  \times  \dfrac{2}{17} }

 \rm \to \:  \dfrac{ \dfrac{ - 9}{17} }{ \dfrac{30}{289} }

 \to \rm \dfrac{ - 9}{17}  \times  \dfrac{289}{ 30}

 \rm \to \:  \dfrac{ - 9 \times 17}{30}

 \rm \to \dfrac{ - 153}{30}

Similar questions