if tan theta is equal to cos 20 degrees + sin 20 degrees by cos 20 degrees minus sin 20 degrees .then the value of thetha is
Answers
Answered by
4
Step-by-step explanation:
cos20+sin20
cos20−sin20
\frac{cos 20(1- \frac{sin20}{cos20}) }{cos 20(1 + \frac{sin20}{cos20} }
cos20(1+
cos20
sin20
cos20(1−
cos20
sin20
)
\frac{cos 20(1- tan20) }{cos 20(1 + tan20) }
cos20(1+tan20)
cos20(1−tan20)
\frac{1- tan20 }{1 + tan20 }
1+tan20
1−tan20
since, \frac{1- tan\alpha }{1 + tan \alpha }= tan (45 -\alpha)
1+tanα
1−tanα
=tan(45−α)
\frac{1- tan20 }{1 + tan20 }
1+tan20
1−tan20
= Tan(45 - 20) = Tan 25
Hence proved
Answered by
1
Answer:See the attached image :-
Attachments:
Similar questions