Math, asked by Puneetji, 1 year ago

if tan theta is equal to n sin alpha cos Alpha upon 1 minus n sin square alpha prove that tan Alpha minus beta is equal to 1 minus n tan Alpha

Answers

Answered by mysticd
92

Step-by-step explanation:

 Given\:tan\beta=\frac{msin\alpha cos\alpha}{1-nsin^{2}\alpha}\:--(1)

 LHS = tan(\alpha-\beta)\\=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}

=\frac{\frac{sin\alpha}{cos\alpha}-\frac{nsin\alpha cos\alpha}{1-sin^{2}\alpha}}{1+\frac{sin\alpha}{cos\alpha}\times \frac{nsin\alpha cos\alpha}{1-nsin^{2}\alpha}}

=\frac{sin\alpha\left(\frac{1}{cos\alpha}-\frac{ncos\alpha}{1-nsin^{2}\alpha}\right)}{1+\frac{nsin^{2}\alpha}{1-nsin^{2}\alpha}}

=\frac{sin\alpha\left(\frac{1-nsin^{2}\alpha-ncos^{2}\alpha}{cos\alpha \big(1-nsin^{2}\alpha\big)}\right)}{\frac{(1-nsin^{2}\alpha+nsin^{2}\alpha)}{(1-nsin^{2}\alpha)}}

=\frac{\frac{sin\alpha}{cos\alpha}[1-n(sin^{2}\alpha+cos^{2}\alpha)]}{1}

=tan\alpha(1-n)\\=(1-n)tan\alpha\\=RHS

•••♪

Answered by Tani2222
0

hope this helps you .....................

Attachments:
Similar questions