if tan theta is equals to 1 then find the values of sin theta + cos theta upon sec theta + cosec theta
Answers
Answered by
0
The value of (Sin θ + Cos θ)/ (Sec θ + Cosec θ) is 1/2
Given:
Tan θ = 1
To find:
(Sin θ + Cos θ)/ (Sec θ + Cosec θ)
Solution:
Formulas used:
From the Trigonometric ratio table
=> Tan 45° = 1
=> Sin 45° = 1/√2
=> Cos 45° = 1/√2
=> Sec 45° = √2
=> Cosec 45° = √2
Given Tan θ = 1
As we know Tan 45° = 1
=> Tan θ = Tan 45°
=> θ = 45°
(Sin θ + Cos θ)/ (Sec θ + Cosec θ)
= (Sin 45° + Cos 45°)/ (Sec 45° + Cosec 45°)
= (1/√2 + 1/√2)/ (√2 + √2)
=
= 1/2
Therefore,
The value of (Sin θ + Cos θ)/ (Sec θ + Cosec θ) is 1/2
#SPJ3
Similar questions