Math, asked by PadmaVaishnab, 1 year ago

If tan theta=m/n, prove that m sin theta- n cos theta / m sin theta + n cos theta=m× m - n×n /m ×m + n× n

Answers

Answered by Anonymous
36
Here's the soln to ur question!!!!


Hope it helps
Attachments:

PadmaVaishnab: hi
Answered by pinquancaro
32

Answer and Explanation:

Given : \tan\theta=\frac{m}{n}

To prove : \frac{m\sin\theta-n\cos\theta}{m\sin\theta+n\cos\theta}=\frac{m\times m-n\times n}{m\times m+n\times n}

Solution :

We know,

\tan\theta=\frac{P}{B}=\frac{m}{n}

The hypotenuse is H=\sqrt{P^2+B^2}

H=\sqrt{m^2+n^2}

\sin\theta=\frac{P}{H}=\frac{m}{\sqrt{m^2+n^2}}

\cos\theta=\frac{B}{H}=\frac{n}{\sqrt{m^2+n^2}}

Substitute the values in LHS,

\frac{m\sin\theta-n\cos\theta}{m\sin\theta+n\cos\theta}

=\frac{m(\frac{m}{\sqrt{m^2+n^2}})-n(\frac{n}{\sqrt{m^2+n^2}})}{m(\frac{m}{\sqrt{m^2+n^2}})+n(\frac{n}{\sqrt{m^2+n^2}})}

=\frac{\frac{m^2-n^2}{\sqrt{m^2+n^2}}}{\frac{m^2+n^2}{\sqrt{m^2+n^2}}}

=\frac{m^2-n^2}{m^2+n^2}

=\frac{m\times m-n\times n}{m\times m+n\times n}

=RHS

LHS=RHS, Hence proved.

Similar questions