Math, asked by bhavanayada, 1 year ago

If tan theta = M/N then show that Msin theta - Ncos theta / Msin theta + Ncos theta = M^2 - N^2 / M^2 + N^2

Answers

Answered by Shubhendu8898
23
plz tell ...if you don't understand last Line...........
Attachments:
Answered by harendrachoubay
13

\dfrac{m\sin \theta - n\cos \theta}{m\sin \theta+n\cos \theta}=\dfrac{m^2-n^2}{m^2+n^2}

Step-by-step explanation:

We have,

\tan \theta=\dfrac{m}{n}     ...... (1)

To prove that, \dfrac{m\sin \theta - n\cos \theta}{m\sin \theta+n\cos \theta}=\dfrac{m^2-n^2}{m^2+n^2}.

L.H.S.=\dfrac{m\sin \theta - n\cos \theta}{m\sin \theta+n\cos \theta}

Dividng nemerator and denominator by \cos \theta, we get

=\dfrac{m\dfrac{\sin \theta }{\cos \theta}-n\dfrac{\cos \theta}{\cos \theta}}{m\dfrac{\sin \theta }{\cos \theta}+n\dfrac{\cos \theta }{\cos \theta}}

=\dfrac{m\tan \theta-n}{m\tan \theta+n}

Using (1), we get

=\dfrac{m(\dfrac{m}{n})-n}{m(\dfrac{m}{n})+n}

=\dfrac{m^2-n^2}{m^2+n^2}

= R.H.S., proved.

Hence, \dfrac{m\sin \theta - n\cos \theta}{m\sin \theta+n\cos \theta}=\dfrac{m^2-n^2}{m^2+n^2}.

Similar questions