If tan theta=n tan phi and sin theta=m sin phi then prove that cos^(2)theta=(m^(2)-1)/(n^(2)-1)
Answers
Answered by
3
Answer:
Step-by-step explanation:
We have,
tan α = n tan β
⇒ tan β = tan α/n
⇒ cot β = n/tan α
sin α = m sin β
⇒ sin β = sin α/m
⇒ cosec β = m/sin α
Since , cosec2 β – cot2 β = 1
⇒ m2/sin2 α – n2/tan2 α = 1
⇒ m2/sin2 α – n2 cos2 α/sin2 α = 1
⇒ m2 – n2 cos2 α = sin2 α
⇒ m2 – n2 cos2 α = 1 – cos2 α
⇒ m2 – 1 = (n2 – 1) cos2 α
⇒ cos2 α = (m2 – 1)/(n2 – 1)
Hence proved.
Similar questions