Math, asked by msslakshmi7650, 10 months ago

If tan theta=root 3 then find sin theta +cosec theta

Answers

Answered by harendrachoubay
12

\sin \theta +\csc \theta=\dfrac{7}{2\sqrt{3}}.

Step-by-step explanation:

We have,

\tan \theta=\sqrt{3}

To find, the vaue of \sin \theta +\csc \theta=?

\tan \theta=\dfrac{\sqrt{3}}{1} =\dfrac{p}{b}

h=\sqrt{p^{2}+b^{2}}

=\sqrt{\sqrt{3} ^{2}+1^{2}}=\sqrt{3+1} =\sqrt{4} =2

Where, h = hypotaneous, b = base and p - perpendicular

\sin \theta +\csc \theta=\dfrac{\sqrt{3}}{2} +\dfrac{2}{\sqrt{3} }

=\dfrac{\sqrt{3}}{2} +\dfrac{2}{\sqrt{3}}=\dfrac{3+4}{2\sqrt{3}} =\dfrac{7}{2\sqrt{3}}

Hence,\sin \theta +\csc \theta=\dfrac{7}{2\sqrt{3}}.

Answered by gaurav200565
0

Answer:

The answer is 7 / 2√3 I had sent the photo above which full explaination

Attachments:
Similar questions