Math, asked by akamalalimi786, 5 months ago

If tan theta +sec theta=x,then show that sin theta = x sqare -1/x square + 1​

Answers

Answered by Anonymous
3

Given:-

\sf{Tan\theta + Sec\theta = x}

To:-

Show that \sf{Sin\theta = \dfrac{x^2 - 1}{x^2 + 1}}

Solution:-

We have,

\sf{Tan\theta + Sec\theta = x}

\sf{:\implies Sec\theta + Tan\theta = x \longrightarrow[i]}

Now,

Let us find out the value of \sf{\dfrac{1}{x}}

\sf{\because x = Sec\theta + Tan\theta}

\sf{\therefore \dfrac{1}{x} = \dfrac{1}{Sec\theta + Tan\theta}}

By rationalizing the denominator,

= \sf{\dfrac{1}{Sec\theta + Tan\theta} \times \dfrac{Sec\theta - Tan\theta}{Sec\theta - Tan\theta}}

= \sf{\dfrac{Sec\theta - Tan\theta}{Sec^2\theta - Tan^2\theta}\:\:[\because (a+b)(a-b) = a^2 - b^2]}

= \sf{\dfrac{Sec\theta - Tan\theta}{1}\:\:[\because Sec^2\theta - Tan^2\theta = 1]}

We got the value of \sf{\dfrac{1}{x}} as \sf{Sec\theta - Tan\theta}

Therefore,

\sf{\dfrac{1}{x} = Sec\theta - Tan\theta \longrightarrow[ii]}

Now,

Adding Equation(i) and (ii)

\sf{x + \dfrac{1}{x} = Sec\theta + Tan\theta + Sec\theta - Tan\theta}

= \sf{\dfrac{x^2 + 1}{x} = 2Sec\theta}

=> \sf{Sec\theta = \dfrac{x^2 + 1}{2x}}

=> \sf{\dfrac{1}{Sec\theta} = \dfrac{1}{\dfrac{x^2 + 1}{2x}}}

=> \sf{Cos\theta = \dfrac{2x}{x^2 + 1}}

We know,

\sf{Sin\theta = \sqrt{1 - Cos^2\theta}}

= \sf{\sqrt{1 - \bigg(\dfrac{2x}{x^2 + 1}\bigg)^2}}

= \sf{\sqrt{\dfrac{(x^2 + 1)^2 - 4x^2}{(x^2 + 1)^2}}}

= \sf{\sqrt{\dfrac{x^4 + 2x^2 + 1 - 4x^2}{(x^2+1)^2}}}

= \sf{\sqrt{\dfrac{x^4 - 2x^2 + 1}{(x^2 + 1)^2}}}

= \sf{\sqrt{\dfrac{(x^2)^2 - 2x^2 + 1}{(x^2 + 1)^2}}}

= \sf{\because x^2 - 2xy + y^2 = (x-y)^2}

= \sf{\sqrt{\dfrac{(x^2 - 1)^2}{(x^2 + 1)^2}}}

= \sf{\dfrac{x-1}{x+1}}

Hence,

\sf{Sin\theta = \dfrac{x-1}{x+1}}

(Proved)

______________________________________

Answered by BrainlyFlash156
31

\huge\underbrace\mathfrak \red{ANSWER }

\sf{Tan\theta + Sec\theta = x}

To:-

Show that \sf{Sin\theta = \dfrac{x^2 - 1}{x^2 + 1}}

Solution:-

We have,

\sf{Tan\theta + Sec\theta = x}

\sf{:\implies Sec\theta + Tan\theta = x \longrightarrow[i]}

Now,

Let us find out the value of \sf{\dfrac{1}{x}}

\sf{\because x = Sec\theta + Tan\theta}

\sf{\therefore \dfrac{1}{x} = \dfrac{1}{Sec\theta + Tan\theta}}

By rationalizing the denominator,

= \sf{\dfrac{1}{Sec\theta + Tan\theta} \times \dfrac{Sec\theta - Tan\theta}{Sec\theta - Tan\theta}}

= \sf{\dfrac{Sec\theta - Tan\theta}{Sec^2\theta - Tan^2\theta}\:\:[\because (a+b)(a-b) = a^2 - b^2]}

= \sf{\dfrac{Sec\theta - Tan\theta}{1}\:\:[\because Sec^2\theta - Tan^2\theta = 1]}

We got the value of \sf{\dfrac{1}{x}} as \sf{Sec\theta - Tan\theta}

Therefore,

\sf{\dfrac{1}{x} = Sec\theta - Tan\theta \longrightarrow[ii]}

Now,

Adding Equation(i) and (ii)

\sf{x + \dfrac{1}{x} = Sec\theta + Tan\theta + Sec\theta - Tan\theta}

= \sf{\dfrac{x^2 + 1}{x} = 2Sec\theta}

=> \sf{Sec\theta = \dfrac{x^2 + 1}{2x}}

=> \sf{\dfrac{1}{Sec\theta} = \dfrac{1}{\dfrac{x^2 + 1}{2x}}}

=> \sf{Cos\theta = \dfrac{2x}{x^2 + 1}}

We know,

\sf{Sin\theta = \sqrt{1 - Cos^2\theta}}

= \sf{\sqrt{1 - \bigg(\dfrac{2x}{x^2 + 1}\bigg)^2}}

= \sf{\sqrt{\dfrac{(x^2 + 1)^2 - 4x^2}{(x^2 + 1)^2}}}

= \sf{\sqrt{\dfrac{x^4 + 2x^2 + 1 - 4x^2}{(x^2+1)^2}}}

= \sf{\sqrt{\dfrac{x^4 - 2x^2 + 1}{(x^2 + 1)^2}}}

= \sf{\sqrt{\dfrac{(x^2)^2 - 2x^2 + 1}{(x^2 + 1)^2}}}

= \sf{\because x^2 - 2xy + y^2 = (x-y)^2}

= \sf{\sqrt{\dfrac{(x^2 - 1)^2}{(x^2 + 1)^2}}}

= \sf{\dfrac{x-1}{x+1}}

Hence,

\sf{Sin\theta = \dfrac{x-1}{x+1}}

(Proved)

HOPE SO IT WILL HELP....

PLEASE MARK IT AS BRAINLIST....

Similar questions