Math, asked by samsha1610, 1 year ago

if tan theta , see theta are roots of ax^2+bx+c=0 then prove that a^4 =b^2 (4ac-b^2)


Rickyharuto: yes...OK I will answrr it in a short tunr..
Rickyharuto: time*
Rickyharuto: bro ..check your ques. once again ...I think it will be a^4 = b^2 ( -4ac + b^2)
samsha1610: no dude its correct only no minus will come
samsha1610: its ok send ur ans
Rickyharuto: no minus?
samsha1610: yse
samsha1610: a^4= b^2 (4ac-b^2) this only
Rickyharuto: OK...
Rickyharuto: wait

Answers

Answered by sonuvuce
29

Answer:

Given that tanθ and secθ are the roots of quadratic equation ax^2+bx+c=0

As we know that for quadratic equation ax^2+bx+c=0

sum of roots = -\frac{b}{a}

And product of roots = \frac{c}{a}

Therefore,

\tan\theta+\sec\theta = -\frac{b}{a}

\frac{1+\sin\theta}{\cos\theta} =-\frac{b}{a}      ..... (1)

Also, \tan\theta \times\sec\theta=\frac{c}{a}

\frac{\sin\theta}{\cos^2\theta} =\frac{c}{a}        ....... (2)

Squaring eq (1)

(\frac{1+\sin\theta}{\cos\theta})^2 =(-\frac{b}{a})^2

or, \frac{(1+\sin\theta)^2}{\cos^2\theta} =\frac{b^2}{a^2}      ...... (3)

Dividing (3) by (2) we get

\frac{(1+\sin\theta)^2}{\sin\theta} =\frac{b^2}{ac}         ............. (4)

Subtracting both the sides from 4

4-\frac{(1+\sin\theta)^2}{\sin\theta} =4-\frac{b^2}{ac}    

\frac{4\sin\theta-(1+\sin\theta)^2}{\sin\theta} =\frac{4ac-b^2}{ac}

or, \frac{(1-\sin\theta)^2}{\sin\theta} =\frac{4ac-b^2}{ac}              ............. (5)

Dividing eq (5) by eq (4)

\frac{(1-\sin\theta)^2}{(1+\sin\theta)^2} =\frac{4ac-b^2}{b^2}         ....... (6)

From equation (1)

\frac{1+\sin\theta}{\cos\theta} =-\frac{b}{a}

Squaring both sides

(\frac{1+\sin\theta}{\cos\theta})^2 =(-\frac{b}{a})^2

Squaring on both sides again

(\frac{1+\sin\theta}{\cos\theta})^4 =(-\frac{b}{a})^4

or, \frac{(1+\sin\theta)^4}{\cos^4\theta} =\frac{b^4}{a^4}

or, \frac{(1+\sin\theta)^4}{\cos^2\theta \times \cos^2\theta} =\frac{b^4}{a^4}

or, \frac{(1+\sin\theta)^4}{(1-\sin^2\theta) \times (1-\sin^2\theta)} =\frac{b^4}{a^4}

or, \frac{(1+\sin\theta)^4}{(1-\sin\theta)^2 \times (1+\sin\theta)^2} =\frac{b^4}{a^4}

or, \frac{(1+\sin\theta)^4}{(1-\sin\theta)^2} =\frac{b^4}{a^4}        ........... (7)

from equation (6) and (7)

\frac{4ac-b^2}{b^2}=\frac{a^4}{b^4}

a^4=b^2(4ac-b^2)       (Hence Proved)

Answered by sairishikesh1991
9

Answer:

a⁴=b²(b²-4ac)

This is a very simple answer, you'll like it!

The key is to know the formula for difference of roots of a quadratic equation.

The modulus of difference of roots is given by √D over a.

If X1 and X2 are roots, then

|X1-X2|=(√D)/4a

Here, D is the DISCRIMINANT or DELTA (∆) equal to b²-4ac.

Step-by-step explanation:

WKT, sec²p-tan²p=1. (take theta in the question as p, I don't have a theta on my keyboard)

=> (sec p-tan p)(sec p+tan p) =1

=> (sec p-tan p)=1/(sec p+tan p)

=> (√D)/a = -a/b

{Sum of roots= -b/a, Difference of roots= (√D)/4a}

=> D/a²=a²/b²

=> b²-4ac = a⁴/b²

=> b⁴-4ab²c=a⁴

=> a⁴-b⁴+4ab²c=0

The question should actually be a⁴=b²(b²-4ac) which is in the 3rd step from the end.

Hope you liked the answer!

Similar questions