Math, asked by parkhi83, 11 months ago

if tan theta + sin theta is equal to M and 10 theta minus sin theta is equal to N show that n square minus n square is equal to 4 root MN​

Answers

Answered by syerule61
3

Answer:

Step-by-step explanation:

Pls Mark as brainliest

Attachments:
Answered by sourya1794
106

Correct Question :-

If tanθ + sinθ = m and tanθ - sinθ = n show that

  • (m² - n²) = 4√mn

Solution :-

\tt\:LHS=({m}^{2}-{n}^{2})

\tt\longrightarrow\:{(tan\theta+sin\theta)}^{2}-{(tan\theta-sin\theta)}^{2}

\tt\longrightarrow\:4tan\theta\:sin\theta

\tt\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:[{(a+b)}^{2}-{(a-b)}^{2}=4ab]

Now,

\tt\:RHS=4\sqrt{mn}

\tt\longrightarrow\:4\sqrt{(tan\theta+sin\theta)(tan\theta-sin\theta)}

\tt\longrightarrow\:4\sqrt{(ta{n}^{2}\theta-si{n}^{2}\theta})

\tt\longrightarrow\:4\sqrt{\bigg(\dfrac{si{n}^{2}\theta}{co{s}^{2}\theta}-si{n}^{2}\theta\bigg)}

\tt\longrightarrow\:4\sqrt{\dfrac{si{n}^{2}\theta-si{n}^{2}\theta\:co{s}^{2}\theta}{cos\theta}}

\tt\longrightarrow\:4\:\dfrac{sin\theta}{cos\theta}\:\sqrt{1-co{s}^{2}\theta}

\tt\longrightarrow\:4\:tan\theta\:\sqrt{si{n}^{2}\theta}

\tt\longrightarrow\:4tan\theta\:sin\theta

\tt\:Hence,LHS=RHS

\tt\therefore({m}^{2}-{n}^{2})=4\sqrt{mn}

Similar questions