if tan theta + sin theta is equal to M and 10 theta minus sin theta is equal to N show that n square minus n square is equal to 4 under root a man
Answers
correct Question :- If tanA+sinA=m, and tanA-sinA=n, show that m²-n² = 4√mn ..
Solution :-
Taking LHS, First :-
→ m² - n²
→ (tanA+sinA)²-(tanA-sinA)²
using (a+b)² - (a-b)²= 4ab we get,
→ 4*tanA*sinA
_________________
Taking RHS now :-
→ 4√(m * n )
→ 4√(tanA+sinA)(tanA-sinA)
using (a + b)(a - b) = a² - b² now,
→ 4√(tan²A-sin²A)
using tanA = (sinA/cosA) now,
→ 4√[(sin²A/cos²A) - sin²A]
→ 4√[ (sin²A - sin²A cos²A)/cos²A ]
→ 4√[sin²A(1 - cos²A) / cos²A ]
using (1 - cos²A) = sinA now,
→ 4√[(sin²A*sin²A)/cos²A]
→ 4√[(sin⁴A)/(cos²A)]
→ 4 * (sin²A/cosA)
→ 4 * (sinA/cosA) * sinA
→ 4 * tanA * sinA = LHS
✪✪ Hence Proved ✪✪
_________________
Correct question:-
If tan∅ + sin∅ is equal to M and tan∅ - sin∅ is equal to N. Show that : M² - N² = 4√MN
Given :-
- tan∅ + sin∅ = M
- tan∅ - sin∅ = N
To show :-
- M² - N² = 4√MN
Proof:-
First we find : M²
Now let's find N²
Now we will find (i) - (ii) :
Now we will find MN
→ MN = (tan∅ + sin∅)(tan∅ - sin∅)
→ MN = tan²∅ - tan∅sin∅ + tan∅sin∅ - sin²∅
→ MN = tan²∅ - sin²∅
[∵ tan²∅ = sin²∅/cos²∅ ]
→ MN = (sin²∅/cos²∅) - sin²∅
→ MN = (sin²∅ - sin²∅cos²∅)/cos²∅
→ MN = [sin²∅(1 - cos²∅)]/cos²∅
[∵ (1 - cos²∅) = sin²∅]
→ MN = [sin²∅ × sin²∅]/cos²∅
→ MN = (sin²∅/cos²∅) × sin²∅
[∵ sin²∅/cos²∅ = tan²∅ ]
→ MN = tan²∅ sin²∅
Now we will find 4√MN
→ 4√MN = 4√(tan²∅ sin²∅)
→ R.H.S. = 4 tan∅ sin∅
Therefore,