if tan theta+sin theta=m and tan theta-sin theta=n show that (m²-n²)=4√mn
Answers
Answered by
2
Answer:
tanθ+sinθ=m and tanθ−sinθ=n
m
2
−n
2
=(m+n)(m−n)
=(tanθ+sinθ+tanθ−sinθ)(tanθ+sinθ−tanθ+sinθ)
=(2tanθ)(2sinθ)
=4tanθsinθ
4
mn
=4
(tanθ+sinθ)(tanθ−sinθ)
4=
((tanθ)
2
−(sinθ)
2
)
=4
(sinθ)
2
(
cos
2
θ
1
−1)
=4sinθ
(cosθ)
2
(1−cos
2
θ)
=4sinθ
(tanθ)
2
=4sinθtanθ
Hence
LHS=RHS (Proved)
Answered by
8
Answer:
i hope half you
mark me brainlist
Attachments:
Similar questions