Math, asked by lakshithaBTS, 5 months ago

if tan theta+sin theta=m and tan theta-sin theta=n, then find k if (m^2-n^2)^2=kmn

Answers

Answered by btsarmyforever90
4

m²=tan²Φ+sin²Φ+2 tanΦsinΦ

n²=tan²Φ+sin²-2 tanΦsinΦ

m²-n²=4tanΦsinΦ

4 \sqrt{mn}  = 4 \sqrt{(tanΦ +  \sinΦ) (tanΦ - sinΦ)}

 = 4 \sqrt{ (\ \{ \tan }^{2}Φ  -  { \ \sin}^{2}Φ)

 = 4 \sqrt{ \frac{ \ { \sin }^{2} Φ}{ { \cos }^{2}  Φ } }  -  \ { \sin }^{2} Φ

4 \sinΦ \sqrt{ \ { \sec }^{2} Φ - 1}

4 \sqrt{mn}  = 4 \: sinΦ \: tanΦ

=m²-n²

Similar questions