Math, asked by yash616, 1 year ago

if tan theta +sin theta=m and tan theta-sin theta=n . then show that m sq. -n sq.=4under root mn.

Answers

Answered by siddhartharao77
1
Given tan theta + sin theta = m   ------- (1)

           tan theta - sin theta = n     -------- (2).


Given LHS = m^2 - n^2

                   = (tan theta + sin theta)^2 - (tan theta - sin theta)^2
 
                   = (tan theta + sin theta + tan theta - sin theta)(tan theta + sin theta - tan theta + sin theta)

                   = 2 tan theta * 2 sin theta

                   = 4 tan theta sin theta

                   = 4 * sin theta/cos theta * sin theta

                   = 4 * sin^2 theta/cos theta.



Given RHS = 4underrot mn

                    = 4 *  \sqrt{(tan theta + sin theta)(tan theta - sin theta)}

                   = 4 \sqrt{tan^2 theta - sin^2 theta}

                  = 4 \sqrt{ \frac{sin^2 theta}{cos^2 theta} - sin^2 theta }

                   = 4 \sqrt{ \frac{sin^2 theta - sin^2 theta * cos^2 theta}{cos^2 theta} }


              = 4 \sqrt{ \frac{sin^2 theta(1 - cos^2 theta)}{cos^2 theta} }

              =  4  \sqrt{ \frac{sin^2 theta * sin^2 theta}{cos^2 theta} }  

             4 \sqrt{ \frac{sin^4 theta}{cos^2 theta} }

             = 4 \sqrt{ \frac{(sin^2 theta)^2}{cos^2 theta} }

             = \frac{4sin^2 theta}{cos theta}


       LHS = RHS.


Hope this helps!

siddhartharao77: Thank You Yash SO Much For The Brainliest
Similar questions