if tan theta + sin theta = m, tan theta - sin theta = n,
then show that m square - n square = 4 root mn
Answers
Answered by
52
Heya !!!
Tan theta + Sin theta = M
And,
Tan theta - Sin theta = N
To prove :- M² - N² = 4✓MN
We have
LHS = ( M² - N² )
=> ( Tan theta + Sin theta )² - ( Tan theta - Sin theta )²
As we know that,
( A + B)² - (A - B)² = 4AB
So,
=> ( Tan theta + Sin theta)² - (Tan theta -Sin theta )² = 4Tan theta Sin theta
RHS = 4 ✓MN
=> 4✓ ( Tan theta + Sin theta )(Tan theta -Sin theta)
As we know that,
( A + B ) ( A - B) = ( A)² - (B)²
=> 4✓(Tan² theta - Sin² theta )
=> 4 ✓ (Sin² theta/ Cos² theta - Sin² theta )
=> 4 × ✓ ( Sin² theta - Sin² theta Cos² theta )/Cos² theta )
=> 4 × Sin theta × ✓1-Cos² theta / Cos theta
=> 4 Tan theta × ✓Sin² theta
=> 4Tan theta Sin theta
Thus,
LHS = RHS = 4Tan theta Sin theta
Hence,
(M² - N² ) = 4✓MN
★ HOPE IT WILL HELP YOU ★
Tan theta + Sin theta = M
And,
Tan theta - Sin theta = N
To prove :- M² - N² = 4✓MN
We have
LHS = ( M² - N² )
=> ( Tan theta + Sin theta )² - ( Tan theta - Sin theta )²
As we know that,
( A + B)² - (A - B)² = 4AB
So,
=> ( Tan theta + Sin theta)² - (Tan theta -Sin theta )² = 4Tan theta Sin theta
RHS = 4 ✓MN
=> 4✓ ( Tan theta + Sin theta )(Tan theta -Sin theta)
As we know that,
( A + B ) ( A - B) = ( A)² - (B)²
=> 4✓(Tan² theta - Sin² theta )
=> 4 ✓ (Sin² theta/ Cos² theta - Sin² theta )
=> 4 × ✓ ( Sin² theta - Sin² theta Cos² theta )/Cos² theta )
=> 4 × Sin theta × ✓1-Cos² theta / Cos theta
=> 4 Tan theta × ✓Sin² theta
=> 4Tan theta Sin theta
Thus,
LHS = RHS = 4Tan theta Sin theta
Hence,
(M² - N² ) = 4✓MN
★ HOPE IT WILL HELP YOU ★
VijayaLaxmiMehra1:
:-)
Answered by
14
Hence, proved.
I hope this will help you
(-:
Similar questions