Math, asked by vaibhav169, 1 year ago

if tan theta + sin theta = m, tan theta - sin theta = n,
then show that m square - n square = 4 root mn

Answers

Answered by Panzer786
52
Heya !!!


Tan theta + Sin theta = M



And,


Tan theta - Sin theta = N




To prove :- M² - N² = 4✓MN



We have


LHS = ( M² - N² )


=> ( Tan theta + Sin theta )² - ( Tan theta - Sin theta )²


As we know that,

( A + B)² - (A - B)² = 4AB



So,


=> ( Tan theta + Sin theta)² - (Tan theta -Sin theta )² = 4Tan theta Sin theta



RHS = 4 ✓MN



=> 4✓ ( Tan theta + Sin theta )(Tan theta -Sin theta)


As we know that,


( A + B ) ( A - B) = ( A)² - (B)²



=> 4✓(Tan² theta - Sin² theta )




=> 4 ✓ (Sin² theta/ Cos² theta - Sin² theta )



=> 4 × ✓ ( Sin² theta - Sin² theta Cos² theta )/Cos² theta )



=> 4 × Sin theta × ✓1-Cos² theta / Cos theta



=> 4 Tan theta × ✓Sin² theta



=> 4Tan theta Sin theta



Thus,


LHS = RHS = 4Tan theta Sin theta




Hence,



(M² - N² ) = 4✓MN






★ HOPE IT WILL HELP YOU ★

VijayaLaxmiMehra1: :-)
TANU81: Nice ❣️
Anonymous: Superb sistah
RehanAhmadXLX: :-)
Anonymous: Thanks :))
Answered by abhi569
14

given \:  \: that \:  \:  \tan( \alpha )  +  \sin( \alpha )  = m \:  \:  \: and \:  \:  \:  \:  \:  \tan( \alpha )  -  \sin( \alpha )  = n \\  \\  \\  \\  \\  \\  \\  =>  \tan( \alpha )  =  \frac{m + n}{2}  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \sin( \alpha )  =  \frac{m  - n}{2}  \\  \\  \\   =>  \cot( \alpha )  =  \frac{2}{m + n}  \:  \:  \:  \:  \: and \:  \:  \:  \cosec( \alpha )  =  \frac{2}{m - n}  \\  \\  \\  \\ using \:  \cosec ^{2} ( \alpha )  -  \cot^{2} ( \alpha )  = 1 \\  \\  \\ ( \frac{2}{m - n} ) ^{2}  - ( \frac{2}{m + n} )^{2}  = 1 \\  \\  \\  => 4(( {m + n)}^{2}  -  {(m - n)}^{2} ) =  {(m - n)}^{2}  {(m + n)}^{2}  \\  \\  \\  => 4(( {m}^{2}  +  {n}^{2}  + 2mn -  {m}^{2}  -  {n}^{2}  + 2mn) = ( {m}^{2}  -  {n}^{2} ) ^{2}  \\  \\  \\  => 4(4mn) =  {( {m}^{2}  -  {n }^{2}) }^{2}  \\  \\  \\  \sqrt{4 \times 4mn }  =  {m}^{2}  -  {n}^{2}  \\  \\  \\  => 4 \sqrt{mn}  =  {m}^{2}  -  {n}^{2}



Hence, proved.





I hope this will help you


(-:

Anonymous: :-)
Anonymous: Osm Bhaiya
abhi569: Thanks bro
abhi569: (-:
Anonymous: My Pleasure !
tejasri2: great answer
Cutiepie93: Nice dear
Similar questions