Math, asked by sunishkarohilla, 24 days ago

If tan theta - tan(90 - theta) = 1 , then find the value of theta ?

Answers

Answered by DeeznutzUwU
1

Answer:

\theta = tan^{-1}( \frac{1-\sqrt{5}}{2}),  tan^{-1}(\frac{1+\sqrt{5}}{2})

Step-by-step explanation:

It is given that

   tan\theta - tan(90-\theta) = 1

We know that tab(90-\theta) = cot\theta

tan\theta-cot\theta = 1

tan\theta = 1 + cot\theta

We know that cot\theta = \frac{1}{tan\theta}

tan\theta = 1 + \frac{1}{tan\theta}

tan\theta = \frac{tan\theta + 1}{tan\theta}

tan^{2}\theta = tan\theta + 1

Let tan\theta = x

x^{2} = x + 1

x^{2} -x -1 = 0

Applying quadratic formula

x = \frac{-b-\sqrt{b^{2}-4ac }}{2a} , \frac{-b+\sqrt{b^{2}-4ac }}{2a}

b^{2} - 4ac = (-1)^{2} -4(1)(-1) = 1 + 4 = 5

x = \frac{-(-1)-\sqrt{5}}{2},  \frac{-(-1)+\sqrt{5}}{2}

x = \frac{1-\sqrt{5}}{2},  \frac{1+\sqrt{5}}{2}

tan \theta = \frac{1-\sqrt{5}}{2},  \frac{1+\sqrt{5}}{2}

\theta = tan^{-1}( \frac{1-\sqrt{5}}{2}),  tan^{-1}(\frac{1+\sqrt{5}}{2})

Similar questions