Math, asked by anuksharahane67, 2 months ago

If tan thita =7/24 then find the value of sin thita and sec thita​

Answers

Answered by varadad25
8

Answer:

\displaystyle{{\boxed{\red{\pink{\sf\:\sin\:\theta\:=\:\dfrac{7}{25}}}}}}

\displaystyle{\boxed{\blue{\sf\:\sec\:\theta\:=\:\dfrac{25}{24}}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\tan\:\theta\:=\:\dfrac{7}{24}}

We have to find the value of \displaystyle{\sf\:\sin\:\theta\:\&\:\sec\:\theta}

Now, we know that,

\displaystyle{\pink{\sf\:\tan\:\theta\:=\:\dfrac{Opposite\:side}{Adjacent\:side}}}

\displaystyle{\implies\sf\:\dfrac{7}{24}\:=\:\dfrac{Opposite\ side}{Adjacent\ side}}

∴ Opposite side = 7 units

Adjacent side = 24 units

Now, we know that,

\displaystyle{\sf\:(\:Hypotenuse\:)^2\:=\:(\:Opposite\ side\:)^2\:+\:(\:Adjacent\:side\:)^2}

\displaystyle{\implies\sf\:H^2\:=\:(\:7\:)^2\:+\:(\:24\:)^2}

\displaystyle{\implies\sf\:H^2\:=\:49\:+\:576}

\displaystyle{\implies\sf\:H^2\:=\:625}

\displaystyle{\implies\sf\:H\:=\:\sqrt{625}}

\displaystyle{\implies\boxed{\red{\sf\:Hypotenuse\:=\:25\:units}}}

Now, we know that,

\displaystyle{\pink{\sf\:\sin\:\theta\:=\:\dfrac{Opposite\ side}{Hypotenuse}}}

\displaystyle{\implies\sf\:\sin\:\theta\:=\:\dfrac{7}{25}}

\displaystyle{\therefore\:\underline{\boxed{\red{\pink{\sf\:\sin\:\theta\:=\:\dfrac{7}{25}}}}}}

Now, we know that,

\displaystyle{\blue{\sf\:\sec\:\theta\:=\:\dfrac{Hypotenuse}{Adjacent\ side}}}

\displaystyle{\implies\sf\:\sec\:\theta\:=\:\dfrac{25}{24}}

\displaystyle{\therefore\:\underline{\boxed{\blue{\sf\:\sec\:\theta\:=\:\dfrac{25}{24}}}}}

Answered by BrainlyRish
5

Given : \sf{\tan \theta = \dfrac{7}{24}}\\

Need To Find : The value of \sin \theta \:and\:\sec\theta

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Basic Formulas of Trigonometry is given by :

\boxed { \begin{array}{c c} \\ \dag \qquad \large {\underline {\bf{ Some \:Basic\:Formulas \:For\:Trigonometry \::}}}\\\\ \sf{ In \:a \:Right \:Angled \: Triangle-:} \\\\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star  \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star  \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star  \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star  \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\

Then,

⠀⠀⠀⠀⠀\sf{\tan \theta = \dfrac{7}{24}= \dfrac{Perpendicular} { Base} }\\

Therefore,

  • Perpendicular of Right Angled Triangle is 7 cm .

  • Base of Right angled triangle is 24 cm .

⠀⠀⠀⠀⠀Finding Hypotenuse of Right angled triangle :

\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\ \bf{ By \:Pythagoras\:Theorem\::}\\

\underline {\boxed {\sf{\star (Perpendicular)^{2} + Base^{2}  = ( Hypotenuse)^{2} }}}\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 7^{2} + 24^{2} = Hypotenuse ^{2}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 49 + 576 = Hypotenuse^{2}}\\

⠀⠀⠀⠀⠀:\implies \tt{  Hypotenuse ^{2} = 625}\\

⠀⠀⠀⠀⠀:\implies \tt{  Hypotenuse = \sqrt{625}}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Hypotenuse = 25\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  Hypotenuse  \:of\:Right \:Angled \:triangle \:is\:25\: cm}}}\\

❒ Finding value of \bf{\sin \theta } by using found values :

⠀⠀⠀⠀⠀\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\

⠀⠀⠀⠀⠀\sf{\sin \theta =  \dfrac{Perpendicular} { Hypotenuse} }\\

Where ,

  • Perpendicular of Right Angled Triangle is 7 cm .

  • Hypotenuse of Right angled triangle is 25 cm .

Therefore,

⠀⠀⠀⠀⠀\sf{\sin \theta = \dfrac{7}{25}= \dfrac{Perpendicular} { Hypotenuse} }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm { Hence,\:The\:Value \:of\:\sin \theta  = \dfrac{7}{25}\: }}}}\:\bf{\bigstar}\\

❒ Finding value of \bf{\sec \theta } by using found values :

⠀⠀⠀⠀⠀\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\

⠀⠀⠀⠀⠀\sf{\sec \theta =  \dfrac{Hypotenuse} { Base} }\\

Where ,

  • Base of Right Angled Triangle is 24 cm .

  • Hypotenuse of Right angled triangle is 25 cm .

Therefore,

⠀⠀⠀⠀⠀\sf{\sec \theta = \dfrac{25}{24}= \dfrac{Hypotenuse} { Base} }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm { Hence,\:The\:Value \:of\:\sec \theta  = \dfrac{25}{24}\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions