Math, asked by vaibavsingh7007bvm, 3 months ago

If tan thita=7/24 then fine the value if sin thita and sec thita​

Answers

Answered by BrainlyRish
1

❍ Basic Formulas of Trigonometry is given by :

\boxed { \begin{array}{c c} \\ \dag \qquad \large {\underline {\bf{ Some \:Basic\:Formulas \:For\:Trigonometry \::}}}\\\\ \sf{ In \:a \:Right \:Angled \: Triangle-:} \\\\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\

Then,

⠀⠀⠀⠀⠀\sf{\tan \theta = \dfrac{7}{24}= \dfrac{Perpendicular} { Base} }\\

Therefore,

  • Perpendicular of Right Angled Triangle is 7 cm .

  • Base of Right angled triangle is 24 cm .

⠀⠀⠀⠀⠀Finding Hypotenuse of Right angled triangle :

\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\ \bf{ By \:Pythagoras\:Theorem\::}\\

\underline {\boxed {\sf{\star (Perpendicular)^{2} + Base^{2} = ( Hypotenuse)^{2} }}}\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀:\implies \tt{ 7^{2} + 24^{2} = Hypotenuse ^{2}}\\\\⠀

⠀⠀⠀⠀⠀⠀:\implies \tt{ 49 + 576 = Hypotenuse^{2}}\\\\

⠀⠀⠀⠀⠀⠀:\implies \tt{ Hypotenuse ^{2} = 625}\\\\

⠀⠀⠀⠀⠀⠀:\implies \tt{ Hypotenuse = \sqrt{625}}\\\\

⠀⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Hypotenuse = 25\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  Hypotenuse \:of\:Right \:Angled \:triangle \:is\:25\: cm}}}\\

❒ Finding value of \bf{\sin \theta } by using found values :

⠀⠀⠀⠀⠀\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\

⠀⠀⠀⠀⠀\sf{\sin \theta = \dfrac{Perpendicular} { Hypotenuse} }\\

Where ,

  • Perpendicular of Right Angled Triangle is 7 cm .

  • Hypotenuse of Right angled triangle is 25 cm .

Therefore,

⠀⠀⠀⠀⠀\sf{\sin \theta = \dfrac{7}{25}= \dfrac{Perpendicular} { Hypotenuse} }\\\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm { Hence,\:The\:Value \:of\:\sin \theta = \dfrac{7}{25}\: }}}}\:\bf{\bigstar}\\

❒ Finding value of \bf{\sec \theta } by using found values :

⠀⠀⠀⠀⠀\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\

⠀⠀⠀⠀⠀\sf{\sec \theta = \dfrac{Hypotenuse} { Base} }\\

Where ,

  • Base of Right Angled Triangle is 24 cm .

  • Hypotenuse of Right angled triangle is 25 cm .

Therefore,

⠀⠀⠀⠀⠀\sf{\sec \theta = \dfrac{25}{24}= \dfrac{Hypotenuse} { Base} }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm { Hence,\:The\:Value \:of\:\sec \theta = \dfrac{25}{24}\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions