if tan thita is 3√3 find other trigonometric ratios
Answers
Answered by
3
Step-by-step explanation:
tanø = 3√3
• cotø = 1/tanø = 1/(3√3)
sec²ø = 1 + tan²ø = 1 + 27 = 28
• secø = √28
cosecø = 1 + cot²ø = 1 + 1/27 = 28/27
• cosecø = √(28/27)
• sinø = 1/cosecø = √27/28
• cosø = 1/secø = 1/√28
Answered by
1
Answer:
If tan ∅ = 3√3
as we know that
tan Ø = Perpendicular/base
let Perpendicular = 3√3 x units
let base= x units
by Pythagoras theorem,
hypotenuse² = base² + Perpendicular²
h² = x² + (3√3x)²
h² = x² + 27x²
h² = 28x²
h = √28x²
h = 2√7x units
now, Sin∅ = perpendicular/base
=> 3√3x/2√7x
=> 3√3/2√7
Cos ∅ = b/h
=> x/2√7x
=> 1/2√7
Tan Ø is given 3√3
Cot∅ = 1/tan Ø
=> 1/3√3
sec ∅ = 1/Cos∅
=> 2√7
cosec ∅ = 1/Sin ∅
=> 2√7/3√3
Required trigonometric ratios are
- Sin ∅ = 3√3/2√7
- Cos ∅ = 1/2√7
- Tan Ø = 3√3
- Cot ∅ = 1/3√3
- Sec ∅ = 2√7
- Cosec ∅ = 2√7/3√3
Similar questions