If TAN titha +1/ TAN titha =2, find the value of TAN square titha +1 / TAN square titha. please give me the answer
Answers
Answered by
5
Tanθ +1/tanθ =2----(1)
Do the square of (1)
(tanθ +1/tanθ)^2 = 2^2
tan^2θ + 1/tan^2 θ +2* tan θ* 1/tanθ=4
tan^2 θ + 1/ tan^2 θ+2 = 4
Therefore
tan ^2θ + 1/ tan ^2 θ= 4-2=2
Do the square of (1)
(tanθ +1/tanθ)^2 = 2^2
tan^2θ + 1/tan^2 θ +2* tan θ* 1/tanθ=4
tan^2 θ + 1/ tan^2 θ+2 = 4
Therefore
tan ^2θ + 1/ tan ^2 θ= 4-2=2
mysticd:
u'r welcome
Answered by
3
given,
tanx + 1/tanx = 2
squaring on both sides
=> ( tanx + 1/tanx )² = 2²
=> tan²x + 1/tan²x + 2*tanx*1/tanx = 4
=>tan²x + 1/tan²x + 2 = 4
=> tan²x + 1/tan²x = 2
HOPE U UNDERSTAND
PLS MARK IT AS BRAINLIEST
tanx + 1/tanx = 2
squaring on both sides
=> ( tanx + 1/tanx )² = 2²
=> tan²x + 1/tan²x + 2*tanx*1/tanx = 4
=>tan²x + 1/tan²x + 2 = 4
=> tan²x + 1/tan²x = 2
HOPE U UNDERSTAND
PLS MARK IT AS BRAINLIEST
Similar questions