Math, asked by wwwyashmahurkar25, 8 months ago

If tan titha+ sin titha=m tan titha-sin titha=n
Then find
M square+N square =4√mn

Answers

Answered by TheValkyrie
3

Question:

If tan θ + sin θ = m, tanθ - sin θ =n, then prove  that m² - n² = 4√mn

Answer:

\Large{\underline{\underline{\bf{Given:}}}}

  • tan θ + sin θ = m
  • tanθ - sin θ =n

\Large{\underline{\underline{\bf{To\:Prove:}}}}

  • m² - n² = 4√mn

\Large{\underline{\underline{\bf{Solution:}}}}

→ Taking the LHS of the equation,

   m² - n² = (tan θ + sin θ)² - (tan θ -sin θ)²

→ Expanding it we get,

    m² - n² = tan²θ + 2 sinθ tanθ + sin²θ - tan²θ + 2 sinθ tanθ - sin²θ

→ Cancelling the like terms we get,

     m² - n² = 4 sinθ tanθ-----equation 1

→ Now taking the RHS of the equation,

  4\sqrt{mn}=4\times \sqrt{(tan\theta +sin\theta)(tan\theta-sin\theta)}

  4\sqrt{mn}=4\times \sqrt{tan^{2}\theta-sin^{2}\theta }

  4\sqrt{mn} =4\times \sqrt{\dfrac{sin^{2}\theta }{cos^{2}\theta }+sin^{2}\theta  }

  4\sqrt{mn}=4\times \sqrt{sin^{2}\theta (\dfrac{1}{cos^{2}\theta }-1)  }

  4\sqrt{mn} = 4sin\theta\sqrt{sec^{2}\theta-1 }

  4\sqrt{mn} =4sin\theta \: tan\theta-equation\:2

→ From equation 1 and 2, RHS are equal, therefore LHS must also be equal

  m² - n² = 4√mn

Hence proved.

\Large{\underline{\underline{\bf{Identities\:used:}}}}

→ ( a + b )² = a² + 2ab + b²

→ ( a - b )² = a² - 2ab + b²

→ a² - b² = ( a + b ) × ( a - b )

→ tan θ = sin θ/ cos θ

→ sec θ = 1/ cos θ

→ sec²θ - 1 = tan²θ

Similar questions