If tan titha+ sin titha=m tan titha-sin titha=n
Then find
M square+N square =4√mn
Answers
Answered by
3
Question:
If tan θ + sin θ = m, tanθ - sin θ =n, then prove that m² - n² = 4√mn
Answer:
- tan θ + sin θ = m
- tanθ - sin θ =n
- m² - n² = 4√mn
→ Taking the LHS of the equation,
m² - n² = (tan θ + sin θ)² - (tan θ -sin θ)²
→ Expanding it we get,
m² - n² = tan²θ + 2 sinθ tanθ + sin²θ - tan²θ + 2 sinθ tanθ - sin²θ
→ Cancelling the like terms we get,
m² - n² = 4 sinθ tanθ-----equation 1
→ Now taking the RHS of the equation,
→ From equation 1 and 2, RHS are equal, therefore LHS must also be equal
m² - n² = 4√mn
Hence proved.
→ ( a + b )² = a² + 2ab + b²
→ ( a - b )² = a² - 2ab + b²
→ a² - b² = ( a + b ) × ( a - b )
→ tan θ = sin θ/ cos θ
→ sec θ = 1/ cos θ
→ sec²θ - 1 = tan²θ
Similar questions