Math, asked by ramsriramsri7, 10 months ago

If tan x + 1 = √2, show that cos x – sin x = √2 sin ​

Answers

Answered by rishu6845
19

\bold{\pink{\underline{Given}}}\longrightarrow \\ tanx + 1 =  \sqrt{2}

\bold{\blue{\underline{To \: prove}}}\longrightarrow \\ cosx - sinx =  \sqrt{2} sinx

\bold{\green{\underline{Concept \: used}}} \\ 1)tan \alpha  =  \dfrac{sin \alpha }{cos \alpha }  \\ 2) {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

\bold{\red{\underline{Proof}}}\longrightarrow \\ tanx + 1 =  \sqrt{2}  \\  =  >  \dfrac{sinx}{cosx}  + 1 =  \sqrt{2}  \\  =  >  \dfrac{sinx + cosx}{cosx}  =  \sqrt{2}  \\  =  > sinx + cosx =  \sqrt{2} cosx \\  =  > sinx  =  \sqrt{2} cosx  - cosx\\   =  > sinx = ( \sqrt{2}  - 1)cosx \\ multiplying \: both \: sides \: by \: ( \sqrt{2}   +  1) \\  =  > ( \sqrt{2}  + 1)sinx = ( \sqrt{2}  + 1)( \sqrt{2}  - 1)cosx \\  =  >  \sqrt{2} sinx + sinx = ( {( \sqrt{2}) }^{2}  -  {(1)}^{2} )cosx \\  =  >  \sqrt{2} sinx + sinx = (2 - 1)cosx \\  =  >  \sqrt{2} sinx = cosx - sinx \\  =  > cosx - sinx =  \sqrt{2} sinx

\bold{\pink{\underline{Additional \: iformation}}}\longrightarrow \\ 1) {sin}^{2} x +  {cos}^{2} x = 1 \\ 2)1 +  {tan}^{2} x =  {sec}^{2} x \\ 3)1 +  {cot}^{2} x =  {cosec}^{2} x

Answered by JanviMalhan
59

Given:

 \tan(x)  + 1 =  \sqrt{2}

To Prove:

 \cos(x)  -  \sin(x)  =  \sqrt{2} \sin(x)

Proof:

 \tan(x)  + 1 =  \sqrt{2}  \\  \\   \implies  \frac{ \sin(x) }{ \cos(x) }  + 1 =  \sqrt{2}  \\  \\  \implies \:  \frac{ \sin(x) +  \cos(x)  }{ \cos(x) }  =  \sqrt{2 }  \\  \\  \implies \:  \sin(x)  +  \cos(x)  =  \sqrt{2}   \cos(x)  \\  \\  \implies \:  \:  \sin(x)  =  \sqrt{2}  \cos(x)  -  \cos(x)  \\  \\  \implies \:  \sin(x)  = ( \sqrt{2}  - 1) \cos(x )  \\  \\  \implies \: ( \sqrt{2}  + 1) \sin(x)  = ( \sqrt{2 }  + 1)( \sqrt{2}  - 1) \cos(x)  \\  \\  \implies \:  \sqrt{2}  \sin(x)  +  \sin(x)  = (2 - 1) \cos(x)  \\  \\  \implies \:  \sqrt{2}  \sin(x)  =  \cos(x)  -  \sin(x)  \\  \\  \implies \:  \:  \cos(x)  -   \sin(x)  =  \sqrt{2}  \sin(x)

Similar questions