Math, asked by patiala7897, 10 months ago

If tan x=3/4 and x lies in the third quadrant find sin x

Answers

Answered by Anonymous
10

Answer:-

Sin x = 3/5

Step - by - step explanation:-

To find :-

Find sin x

Given:-

 \bf{ \tan(x)  =  \frac{3}{4} }

Solution:-

We know that,

 \tan( x)  =  \frac{perpendicular}{base}   =  \frac{3}{4}  \\  \\

By the help of Pythagoras-

 \bf{hypt. =  \sqrt{ {perpend.}^{2} +  {base}^{2}  } } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{9 + 16}  = 5 \\  \\

Now ,we know that,

  \bf{\sin(x)  =  \frac{perpend.}{hypt.}  }\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{3}{5}

Answered by pranatiprana
8

 \\ according \: to \: the \: question \:  \tan(x \ ) lies \: to \: third \: quadrant \:  \\  \tan(x)  =  \frac{3}{4}  \\ in \: oab \\ angle \: a \:  = 90 \: degrees \\ by \: phythogarian \: thereom \\  {ob}^{2}  =  {oa}^{2}  +  {ab}^{2}  \\(  { - 4}^{2} ) + ( { - 3}^{2} ) \\ 16 + 9 = 25 \\  {5}^{2}  \\ ob = 5 \\ now \:  \sin(x)  =  \frac{ab}{ob} =   \frac{ - 3}{5}

Attachments:
Similar questions