Math, asked by priya4537, 8 months ago

If tan x= 3/4 ,π < x < 3π/2, find the value of sin x/2, cos x/2 and the tan x/2 .​

Answers

Answered by CrEEpycAmp
14

\underline{\huge{Answer:-}}

\\ \\   \large\mathcal{Since \:\pi &lt;  \frac{3\pi}{2},cos \: x \: is \: negative.  }

 \large \mathcal{ Also \:  \:  \frac{\pi}{2} &lt;  \frac{x}{2}   &lt;  \frac{3\pi}{4}.  } \\

 \large \mathtt{Therefore, \: sin \frac{x}{2 } \:  is \: positive \: cos \frac{x}{2} \: is \: negative. }

N,

 \implies \: \large \mathcal{ {sec}^{2}x = 1 +  {tan}^{2} x   = 1 +  \frac{9}{16}  =  \frac{25}{16}  }

 \implies  \:  \large \mathcal{ {cos}^{2} x \:  =  \frac{16}{25} \:  or \: cos \: x =   - \frac{ 4}{5} } \: </u></em><em><u>

 \implies  \:  \large \mathcal{2  \: {sin}^{2} \:  \frac{x}{2} = 1 \: cos \: x \: 1 + \frac{4}{5} =  \frac{9}{5} .    }

 \implies  \:  \large \mathcal{  {sin}^{2} \:  \frac{x}{2}   =  \frac{9}{10}  } \\

 \implies \:  \large \mathcal{or \: \: sin \frac{x}{2} =  \frac{3}{ \sqrt{10} } </u></em><em><u> } \\

 \implies  \:  \large \mathcal{2 {cos}^{2} \frac{x}{2}  = 1 + cos \: x \:  = 1 -  \frac{4}{5}   =  \frac{1}{5} }

 \implies \:  \large \mathcal{ {cos}^{2} \frac{x}{2}  =  \frac{1}{10}  }  \\

 \implies  \:  \large \mathcal{cos \frac{x}{2}  =  -  \frac{1}{ \sqrt{10} } } \\

 \Large \fbox \mathtt{Hence,  \:  \:  \:  tan \frac{x}{2} =  \frac{sin \frac{x}{2} }{cos \frac{x}{2}  }  =  \frac{3}{ \sqrt{10} }   \times ( \frac{ -  \sqrt{10} }{1} ) =  - 3.}

Similar questions