Math, asked by shadab786saifilo, 1 month ago

if tan x = √ 3 , then find the value of cot x + sin x .​

Answers

Answered by ItsRuchikahere
3

Given:

  • tan x = √ 3

To Find:

  • value of cot x + sin x

Solution:

we have,

 \sf \: tan \: x =  \sqrt{3}  \\  \sf \: but \: tan \: 60 =  \sqrt{3}  \\  \boxed{ \sf \: x = 60}

So,

 \sf cot \: x = cot \: 60  =  \frac{1}{ \sqrt{3} }  \\  \sf sin \:x = sin \: 60 =  \frac{ \sqrt{3} }{2}

now,

  \sf cot \: x + sin \: x =  \frac{1}{ \sqrt{3}  }  +  \frac{ \sqrt{3} }{2}  \\  \sf =  \frac{2 + 3}{2 \sqrt{3} }  \\  \sf  =  \frac{5}{2 \sqrt{3} }  \\  =  \frac{10 \sqrt{3} }{12}  =  \frac{5 \sqrt{3} }{6}

#helpingismypleasure

Similar questions