Math, asked by Mozahidanwar, 1 year ago

if tan x=a/b, prove that asin2x+bcos2x=b

Answers

Answered by MaheswariS
9

\textbf{Given:}

tan\,x=\frac{a}{b}

\text{We know that,}

\implies\boxed{\begin{minipage}{3cm}$\bf\,sin\,2A=\frac{2\,tanA}{1+tan^2A}\\\\cos\,2A=\frac{1-tan^2A}{1+tan^2A}$\end{minipage}}

\text{Now,}

a\,sin2x+b\,cos2x

=\displaystyle\,a[\frac{2\,tanx}{1+tan^2x}]+b[\frac{1-tan^2x}{1+tan^2x}]

=\displaystyle\,a[\frac{2(\frac{a}{b})}{1+\frac{a^2}{b^2}}]+b[\frac{1-\frac{a^2}{b^2}}{1+\frac{a^2}{b^2}}]

=\displaystyle\,[\frac{\frac{2a^2}{b}}{\frac{a^2+b^2}{b^2}}]+b[\frac{\frac{b^2-a^2}{b^2}}{\frac{a^2+b^2}{b^2}}]

=\displaystyle\,\frac{\frac{2a^2b^2}{b}}{a^2+b^2}+b[\frac{b^2-a^2}{a^2+b^2}]

=\displaystyle\,\frac{2a^2b}{a^2+b^2}+\frac{b^3-a^2b}{a^2+b^2}

=\displaystyle\,\frac{2a^2b+b^3-a^2b}{a^2+b^2}

=\displaystyle\,\frac{a^2b+b^3}{a^2+b^2}

=\displaystyle\,\frac{b(a^2+b^2)}{a^2+b^2}

=b

\implies\boxed{\bf\,a\,sin2x+b\,cos2x=b}

Answered by nandiniilayaraja
2

I hope this answer helps you.

Attachments:
Similar questions