Math, asked by iamasher, 11 months ago

If tan x =b/a prove that acos 2x + bsin 2x = a

Answers

Answered by Anonymous
2

\huge\bf{Answer:-}

Refer the attachment.

Attachments:
Answered by RvChaudharY50
67

\LARGE\underline{\underline{\sf \red{G}\blue{i}\green{v}\orange{e}\red{n}:}}

Tan x = b/a

\LARGE\underline{\underline{\sf \red{T}\blue{o}\:\green{F}\orange{i}\pink{n}\red{d}:}}

Prove :---- acos 2x + bsin 2x = a

\LARGE\underline{\underline{\sf \red{S}\blue{o}\green{l}\orange{u}\pink{t}\purple{i}\orange{o}\red{n}:}}

Formula to be used :------

  • Tan A = Sin A / cosA
  • cos(A-B) = cosACosB + sinAsinB
  • cos(-x) = cosx

See my solution in Easiest way now ,:---------

it is given that Tan x = b/a

and we know that tan x = sinx/cosx

so,

sinx/cosx = b/a

comparing we get,

b = sinx

a = cosx

Putting This value in Question now we get,

acos 2x + bsin 2x

(cosx)(cos2x) + sinx(sin2x)

= cosAcosB + sinAsinB

= Cos(x - 2x)

= Cos(-x)

= Cosx = a \huge\underline\purple{\mathcal PROVED}

\color {red}\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

\underline\textsf{Double Angle Identities}

→ sin²θ = 2sinθcosθ

= \frac{2 \tanθ}{1+ \tan^{2}θ}

→ cos2θ = cos²θ- sin²θ

= 1 - 2sin²θ

= 2cos²θ- 1

= \frac{1- \tan^{2}θ}{1+ \tan^{2}θ}

→Tan2θ = \frac{2 \tanθ}{1- \tan^{2}θ}

\mathcal{BE\:\:BRAINLY}

Similar questions