Math, asked by kaush12, 11 months ago

If tan x =b/a
, then find the value of

root(a+b / a-b) + root(a-b / a+b)

Answers

Answered by sanketj
0

tanx = b/a

we \: know \\ tanx =  \frac{b}{a}  \\ b = a.tanx \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(i) \\  \\  \\ \:  \:  \:  \:  \:  \sqrt{ \frac{a + b}{a - b} }  +  \sqrt{ \frac{a - b}{a + b} }  \\  =  \sqrt{ \frac{(a + b)(a + b)}{(a - b)(a + b)} } \\   +  \sqrt{ \frac{(a - b)(a - b)}{(a - b)(a + b)} }  \\  =  \sqrt{ \frac{ {(a  +  b)}^{2} }{ {a}^{2} -  {b}^{2}  } }  +  \sqrt{ \frac{ {(a - b)}^{2} }{ {a}^{2}  -  {b}^{2} } }  \\  =  \frac{ \sqrt{ {(a + b)}^{2} } }{ \sqrt{ {a}^{2} -  {b}^{2}  } }  +  \frac{ \sqrt{ {(a - b)}^{2} } }{ {a}^{2}  -  {b}^{2} }  \\  =  \frac{a + b + a - b}{ \sqrt{ {a}^{2} -  {b}^{2}  } }  =  \frac{2a}{ \sqrt{ {a}^{2}  -  {b}^{2} } }  \\ substituting \: (i) \: we \: get \\  =  \frac{2a}{ \sqrt{ {a}^{2} -  {(a.tanx)}^{2}  }  } \\  =  \frac{2a}{ \sqrt{ {a}^{2}  -  {a}^{2}. {tan}^{2}x }  }  \\  =  \frac{2a}{ \sqrt{ {a}^{2} (1 -  {tan}^{2} x)} }  \\  =  \frac{2a}{ \sqrt{ {a}^{2} }  \times  \sqrt{(1 -  {tan}^{2}x) } }  \\  =  \frac{2a}{a \times  \sqrt{1 -  {tan}^{2} x} }  \\  =  \frac{2}{ \sqrt{1 -  {tan}^{2} x} }

Similar questions