Math, asked by anonymous1094, 5 months ago

if tan x + cot x = 2 find the value of tan²x+cot²x​

Answers

Answered by pravi7th69
1

Answer:

4

Step-by-step explanation:

if

tan x+ cot x= 2

then tan^2 x+ cot^2 x=4

Answered by Anonymous
118

Given :-

  • tan x + cot x = 2

To Find :–

  • tan² x + cot² x = ?

Solution :–

We are given :-

  \sf \red{\:  \:  \:  \:  \:  \:  \:  :\implies \tan(x)  +  \cot(x)  = 2}

  • Squaring on both side : –

  \sf\:  \:  \:  \:  \:  \:  \:  : \implies \{ \tan(x)  +  \cot(x)  \}^{2}  =  {(2)}^{2}

  • Using identity :–

  \sf\red{\:  \:  \:  \:  \:  \:  \:  : \implies  \boxed{ \sf {(a + b)}^{2}  =  {a}^{2}   +  {b}^{2} + 2ab}} \\

  \sf\:  \:  \:  \:  \:  \:  \:  :\implies \tan^{2} (x)+ \cot^{2} (x) + 2 \tan(x) . \cot(x)  = 4\\

  \sf\:  \:  \:  \:  \:  \:  \:  : \implies \tan^{2} (x)+ \cot^{2} (x) + 2 \tan(x) . \left \{  \dfrac{1}{ \tan(x) } \right \}  = 4\\

  \sf\:  \:  \:  \:  \:  \:  \:  :\implies \tan^{2} (x)+ \cot^{2} (x) + 2= 4\\

  \sf\:  \:  \:  \:  \:  \:  \:  : \implies \tan^{2} (x)+ \cot^{2} (x) = 4 - 2 \\

  \sf\:  \:  \:  \:  \:  \:  \:  : \implies \tan^{2} (x)+ \cot^{2} (x) = 2 \\

  \sf \red{\:  \:  \:  \:  \:  \:  \:  : \implies  \boxed{ \sf \tan^{2} (x)+ \cot^{2} (x) = 2 }}\\\\

\therefore\:\underline{\textsf{ Value of tan² x + cot² x is \textbf{2}}}\\

Similar questions